Spaces:
Sleeping
Sleeping
File size: 6,936 Bytes
56bc4cf 33a4549 56bc4cf 0858d17 56bc4cf 33a4549 56bc4cf 0858d17 56bc4cf 0858d17 56bc4cf 33a4549 56bc4cf 0858d17 33a4549 56bc4cf 33a4549 0858d17 33a4549 0858d17 33a4549 0858d17 33a4549 0858d17 33a4549 342fd5f 3e4bf85 342fd5f 3e4bf85 342fd5f 3e4bf85 7a4bde2 342fd5f 3e4bf85 342fd5f 3e4bf85 342fd5f be852d2 3e4bf85 342fd5f be852d2 3778f9f 56bc4cf be852d2 3778f9f be852d2 3778f9f 7a4bde2 be852d2 7a4bde2 be852d2 3e4bf85 3778f9f 8e384aa be852d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import os
import sys
import tempfile
import streamlit as st
import pandas as pd
# Add 'src' to Python path
sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
from main import run_pipeline
st.set_page_config(page_title="π° AI News Analyzer", layout="wide")
st.title("π§ AI-Powered Investing News Analyzer")
# --- API Keys ---
st.subheader("π API Keys")
openai_api_key = st.text_input("OpenAI API Key", type="password").strip()
tavily_api_key = st.text_input("Tavily API Key", type="password").strip()
# --- Topics ---
st.subheader("π Topics of Interest")
topics_data = []
with st.form("topics_form"):
topic_count = st.number_input("How many topics?", min_value=1, max_value=10, value=1, step=1)
for i in range(topic_count):
col1, col2 = st.columns(2)
with col1:
topic = st.text_input(f"Topic {i+1}", key=f"topic_{i}")
with col2:
days = st.number_input(f"Timespan (days)", min_value=1, max_value=30, value=7, key=f"days_{i}")
topics_data.append({"topic": topic, "timespan_days": days})
submitted = st.form_submit_button("Run Analysis")
# --- Tabs ---
tab_report, tab_articles, tab_insights = st.tabs(["π Report", "π Articles", "π Insights"])
articles_df = pd.DataFrame()
insights_df = pd.DataFrame()
html_paths = []
if submitted:
if not openai_api_key or not tavily_api_key or not all([td['topic'] for td in topics_data]):
st.warning("Please fill in all fields.")
else:
os.environ["OPENAI_API_KEY"] = openai_api_key
os.environ["TAVILY_API_KEY"] = tavily_api_key
df = pd.DataFrame(topics_data)
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp_csv:
df.to_csv(tmp_csv.name, index=False)
csv_path = tmp_csv.name
spinner_box = st.empty()
log_box = st.empty()
logs = []
def log(msg):
logs.append(msg)
log_box.code("\n".join(logs))
try:
spinner_box.markdown("β³ Running analysis pipeline...")
html_paths, articles_df, insights_df = run_pipeline(csv_path, tavily_api_key, progress_callback=log)
spinner_box.success("β
Analysis complete!")
# Report Tab
with tab_report:
if html_paths:
for path in html_paths:
with open(path, 'r', encoding='utf-8') as f:
html_content = f.read()
st.components.v1.html(html_content, height=600, scrolling=True)
else:
st.error("β No reports were generated.")
# Articles Tab
with tab_articles:
if not articles_df.empty:
st.dataframe(articles_df[["Title", "URL", "Summary", "Priority", "Date"]],
use_container_width=True)
else:
st.info("No articles available.")
# Insights Tab
with tab_insights:
if not insights_df.empty:
st.dataframe(insights_df, use_container_width=True)
else:
st.info("No insights available.")
except Exception as e:
spinner_box.error("β Failed.")
log_box.error(f"β Error: {e}")
# import os
# import sys
# import tempfile
# import streamlit as st
# import pandas as pd
# # Add 'src' to Python path so we can import main.py
# sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
# from main import run_pipeline
# st.set_page_config(page_title="π° AI News Analyzer", layout="wide")
# st.title("π§ AI-Powered Investing News Analyzer")
# # === API Key Input ===
# st.subheader("π API Keys")
# openai_api_key = st.text_input("OpenAI API Key", type="password").strip()
# tavily_api_key = st.text_input("Tavily API Key", type="password").strip()
# # === Topic Input ===
# st.subheader("π Topics of Interest")
# topics_data = []
# with st.form("topics_form"):
# topic_count = st.number_input("How many topics?", min_value=1, max_value=10, value=1, step=1)
# for i in range(topic_count):
# col1, col2 = st.columns(2)
# with col1:
# topic = st.text_input(f"Topic {i+1}", key=f"topic_{i}")
# with col2:
# days = st.number_input(f"Timespan (days)", min_value=1, max_value=30, value=7, key=f"days_{i}")
# topics_data.append({"topic": topic, "timespan_days": days})
# submitted = st.form_submit_button("Run Analysis")
# # === Tabs Setup ===
# tab_report, tab_articles, tab_insights = st.tabs(["π Report", "π Articles", "π Insights"])
# articles_df = pd.DataFrame()
# insights_df = pd.DataFrame()
# html_paths = []
# # === Submission logic ===
# if submitted:
# if not openai_api_key or not tavily_api_key or not all([td['topic'] for td in topics_data]):
# st.warning("Please fill in all fields.")
# else:
# os.environ["OPENAI_API_KEY"] = openai_api_key
# os.environ["TAVILY_API_KEY"] = tavily_api_key
# df = pd.DataFrame(topics_data)
# with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp_csv:
# df.to_csv(tmp_csv.name, index=False)
# csv_path = tmp_csv.name
# spinner_box = st.empty()
# log_box = st.empty()
# logs = []
# def log(msg):
# logs.append(msg)
# log_box.code("\n".join(logs))
# try:
# spinner_box.markdown("β³ Running analysis pipeline...")
# # Run the full pipeline
# html_paths, articles_df, insights_df = run_pipeline(csv_path, tavily_api_key, progress_callback=log)
# spinner_box.success("β
Analysis complete!")
# # --- Report Tab ---
# with tab_report:
# if html_paths:
# for path in html_paths:
# with open(path, 'r', encoding='utf-8') as f:
# html_content = f.read()
# st.components.v1.html(html_content, height=600, scrolling=True)
# else:
# st.error("β No reports were generated.")
# # --- Articles Tab ---
# with tab_articles:
# if not articles_df.empty:
# st.dataframe(articles_df, use_container_width=True)
# else:
# st.info("No articles available.")
# # --- Insights Tab ---
# with tab_insights:
# if not insights_df.empty:
# st.dataframe(insights_df, use_container_width=True)
# else:
# st.info("No insights available.")
# except Exception as e:
# spinner_box.error("β Failed.")
# log_box.error(f"β Error: {e}")
|