File size: 6,936 Bytes
56bc4cf
 
33a4549
56bc4cf
 
 
0858d17
56bc4cf
33a4549
56bc4cf
 
 
 
0858d17
56bc4cf
 
 
 
0858d17
56bc4cf
 
 
 
 
 
 
 
 
33a4549
 
 
56bc4cf
0858d17
33a4549
 
 
 
56bc4cf
33a4549
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0858d17
33a4549
 
 
 
 
 
 
 
 
0858d17
33a4549
 
0858d17
 
33a4549
 
 
0858d17
33a4549
 
 
 
 
 
 
 
 
 
342fd5f
 
 
 
 
 
 
 
 
 
3e4bf85
 
342fd5f
 
 
 
 
 
 
3e4bf85
342fd5f
 
3e4bf85
7a4bde2
342fd5f
 
 
 
 
3e4bf85
 
342fd5f
3e4bf85
342fd5f
be852d2
 
 
 
 
 
3e4bf85
342fd5f
 
 
 
 
 
 
 
 
 
 
 
be852d2
 
3778f9f
 
 
 
 
 
56bc4cf
be852d2
3778f9f
 
be852d2
3778f9f
 
7a4bde2
be852d2
 
 
 
 
 
7a4bde2
be852d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e4bf85
3778f9f
 
 
8e384aa
be852d2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os
import sys
import tempfile
import streamlit as st
import pandas as pd

# Add 'src' to Python path
sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
from main import run_pipeline

st.set_page_config(page_title="πŸ“° AI News Analyzer", layout="wide")
st.title("🧠 AI-Powered Investing News Analyzer")

# --- API Keys ---
st.subheader("πŸ” API Keys")
openai_api_key = st.text_input("OpenAI API Key", type="password").strip()
tavily_api_key = st.text_input("Tavily API Key", type="password").strip()

# --- Topics ---
st.subheader("πŸ“ˆ Topics of Interest")
topics_data = []
with st.form("topics_form"):
    topic_count = st.number_input("How many topics?", min_value=1, max_value=10, value=1, step=1)
    for i in range(topic_count):
        col1, col2 = st.columns(2)
        with col1:
            topic = st.text_input(f"Topic {i+1}", key=f"topic_{i}")
        with col2:
            days = st.number_input(f"Timespan (days)", min_value=1, max_value=30, value=7, key=f"days_{i}")
        topics_data.append({"topic": topic, "timespan_days": days})
    submitted = st.form_submit_button("Run Analysis")

# --- Tabs ---
tab_report, tab_articles, tab_insights = st.tabs(["πŸ“ Report", "πŸ“‹ Articles", "πŸ“Š Insights"])
articles_df = pd.DataFrame()
insights_df = pd.DataFrame()
html_paths = []

if submitted:
    if not openai_api_key or not tavily_api_key or not all([td['topic'] for td in topics_data]):
        st.warning("Please fill in all fields.")
    else:
        os.environ["OPENAI_API_KEY"] = openai_api_key
        os.environ["TAVILY_API_KEY"] = tavily_api_key
        df = pd.DataFrame(topics_data)
        with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp_csv:
            df.to_csv(tmp_csv.name, index=False)
            csv_path = tmp_csv.name

        spinner_box = st.empty()
        log_box = st.empty()
        logs = []

        def log(msg):
            logs.append(msg)
            log_box.code("\n".join(logs))

        try:
            spinner_box.markdown("⏳ Running analysis pipeline...")
            html_paths, articles_df, insights_df = run_pipeline(csv_path, tavily_api_key, progress_callback=log)
            spinner_box.success("βœ… Analysis complete!")

            # Report Tab
            with tab_report:
                if html_paths:
                    for path in html_paths:
                        with open(path, 'r', encoding='utf-8') as f:
                            html_content = f.read()
                            st.components.v1.html(html_content, height=600, scrolling=True)
                else:
                    st.error("❌ No reports were generated.")

            # Articles Tab
            with tab_articles:
                if not articles_df.empty:
                    st.dataframe(articles_df[["Title", "URL", "Summary", "Priority", "Date"]],
                                 use_container_width=True)
                else:
                    st.info("No articles available.")

            # Insights Tab
            with tab_insights:
                if not insights_df.empty:
                    st.dataframe(insights_df, use_container_width=True)
                else:
                    st.info("No insights available.")

        except Exception as e:
            spinner_box.error("❌ Failed.")
            log_box.error(f"❌ Error: {e}")

# import os
# import sys
# import tempfile
# import streamlit as st
# import pandas as pd

# # Add 'src' to Python path so we can import main.py
# sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
# from main import run_pipeline

# st.set_page_config(page_title="πŸ“° AI News Analyzer", layout="wide")
# st.title("🧠 AI-Powered Investing News Analyzer")

# # === API Key Input ===
# st.subheader("πŸ” API Keys")
# openai_api_key = st.text_input("OpenAI API Key", type="password").strip()
# tavily_api_key = st.text_input("Tavily API Key", type="password").strip()

# # === Topic Input ===
# st.subheader("πŸ“ˆ Topics of Interest")
# topics_data = []
# with st.form("topics_form"):
#     topic_count = st.number_input("How many topics?", min_value=1, max_value=10, value=1, step=1)

#     for i in range(topic_count):
#         col1, col2 = st.columns(2)
#         with col1:
#             topic = st.text_input(f"Topic {i+1}", key=f"topic_{i}")
#         with col2:
#             days = st.number_input(f"Timespan (days)", min_value=1, max_value=30, value=7, key=f"days_{i}")
#         topics_data.append({"topic": topic, "timespan_days": days})

#     submitted = st.form_submit_button("Run Analysis")

# # === Tabs Setup ===
# tab_report, tab_articles, tab_insights = st.tabs(["πŸ“ Report", "πŸ“‹ Articles", "πŸ“Š Insights"])
# articles_df = pd.DataFrame()
# insights_df = pd.DataFrame()
# html_paths = []

# # === Submission logic ===
# if submitted:
#     if not openai_api_key or not tavily_api_key or not all([td['topic'] for td in topics_data]):
#         st.warning("Please fill in all fields.")
#     else:
#         os.environ["OPENAI_API_KEY"] = openai_api_key
#         os.environ["TAVILY_API_KEY"] = tavily_api_key

#         df = pd.DataFrame(topics_data)
#         with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp_csv:
#             df.to_csv(tmp_csv.name, index=False)
#             csv_path = tmp_csv.name

#         spinner_box = st.empty()
#         log_box = st.empty()
#         logs = []

#         def log(msg):
#             logs.append(msg)
#             log_box.code("\n".join(logs))

#         try:
#             spinner_box.markdown("⏳ Running analysis pipeline...")

#             # Run the full pipeline
#             html_paths, articles_df, insights_df = run_pipeline(csv_path, tavily_api_key, progress_callback=log)

#             spinner_box.success("βœ… Analysis complete!")

#             # --- Report Tab ---
#             with tab_report:
#                 if html_paths:
#                     for path in html_paths:
#                         with open(path, 'r', encoding='utf-8') as f:
#                             html_content = f.read()
#                             st.components.v1.html(html_content, height=600, scrolling=True)
#                 else:
#                     st.error("❌ No reports were generated.")

#             # --- Articles Tab ---
#             with tab_articles:
#                 if not articles_df.empty:
#                     st.dataframe(articles_df, use_container_width=True)
#                 else:
#                     st.info("No articles available.")

#             # --- Insights Tab ---
#             with tab_insights:
#                 if not insights_df.empty:
#                     st.dataframe(insights_df, use_container_width=True)
#                 else:
#                     st.info("No insights available.")

#         except Exception as e:
#             spinner_box.error("❌ Failed.")
#             log_box.error(f"❌ Error: {e}")