Spaces:
Running
Running
File size: 8,819 Bytes
56bc4cf 3778f9f 56bc4cf 3778f9f 56bc4cf 3778f9f 56bc4cf 3778f9f 56bc4cf 3778f9f 56bc4cf 3778f9f 56bc4cf 3778f9f 56bc4cf 3778f9f 56bc4cf 3778f9f 56bc4cf 3778f9f 56bc4cf 342fd5f 3778f9f 342fd5f 3778f9f 3e4bf85 342fd5f 3e4bf85 342fd5f 3e4bf85 342fd5f 3e4bf85 7a4bde2 342fd5f 3e4bf85 342fd5f 3e4bf85 342fd5f 3e4bf85 342fd5f 3778f9f 8e384aa 56bc4cf 3778f9f 7a4bde2 3e4bf85 3778f9f 8e384aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import os
import sys
import time
import itertools
import streamlit as st
import pandas as pd
from io import StringIO
# Add 'src' to Python path so we can import main.py
sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
from main import run_pipeline # We will update this to return report, articles_df, insights_df
# --- Page Config ---
st.set_page_config(page_title="π° AI News Analyzer", layout="wide")
st.title("π§ AI-Powered Investing News Analyzer")
# --- API Key Inputs ---
st.subheader("π API Keys")
openai_api_key = st.text_input("OpenAI API Key", type="password").strip()
tavily_api_key = st.text_input("Tavily API Key", type="password").strip()
# --- Topics ---
st.subheader("π Topics of Interest")
topics_data = []
with st.form("topics_form"):
topic_count = st.number_input("How many topics?", min_value=1, max_value=10, value=1, step=1)
for i in range(topic_count):
col1, col2 = st.columns(2)
with col1:
topic = st.text_input(f"Topic {i+1}", key=f"topic_{i}")
with col2:
timespan = st.number_input(f"Timespan (days) for Topic {i+1}", min_value=1, max_value=30, value=7, step=1, key=f"timespan_{i}")
topics_data.append((topic, timespan))
run_button = st.form_submit_button("π Run Analysis")
# --- Placeholder for logs ---
log_placeholder = st.empty()
# --- Results Tabs ---
tabs = st.tabs(["π Report", "π Articles", "π Insights"])
if run_button:
if not openai_api_key or not tavily_api_key:
st.error("Please provide both OpenAI and Tavily API keys.")
else:
run_button = False # Disable button
log_placeholder.info("π Starting analysis...")
# Rotating status messages
status_placeholder = st.empty()
steps = ["Running Tavily search...", "Analyzing with FinBERT & FinGPT...", "Generating LLM summary..."]
cycle = itertools.cycle(steps)
# Display rotating messages while running pipeline
with st.spinner("Working..."):
for _ in range(3):
status_placeholder.text(next(cycle))
time.sleep(0.8)
# Run the pipeline
try:
report_md, articles_df, insights_df = run_pipeline(
topics=topics_data,
openai_api_key=openai_api_key,
tavily_api_key=tavily_api_key
)
log_placeholder.success("β
Analysis completed.")
except Exception as e:
log_placeholder.error(f"β Error: {e}")
st.stop()
# --- Report Tab ---
with tabs[0]:
st.subheader("π AI-Generated Report")
st.markdown(report_md, unsafe_allow_html=True)
# --- Articles Tab ---
with tabs[1]:
st.subheader("π Articles & Priorities")
if not articles_df.empty:
# Color code priority
articles_df['Priority'] = articles_df['Priority'].map(
lambda x: "π΄ High" if str(x).lower() == "haute" or str(x).lower() == "high" else "π’ Low"
)
st.dataframe(articles_df, use_container_width=True)
# CSV download
csv = articles_df.to_csv(index=False)
st.download_button("β¬οΈ Download Articles CSV", data=csv, file_name="articles.csv", mime="text/csv")
else:
st.warning("No articles found.")
# --- Insights Tab ---
with tabs[2]:
st.subheader("π Company Insights (FinGPT + FinBERT)")
if insights_df is not None and not insights_df.empty:
st.dataframe(insights_df, use_container_width=True)
csv = insights_df.to_csv(index=False)
st.download_button("β¬οΈ Download Insights CSV", data=csv, file_name="insights.csv", mime="text/csv")
else:
st.info("No company insights generated yet.")
# import os
# import sys
# import tempfile
# import time
# import itertools
# import streamlit as st
# import pandas as pd
# from threading import Thread
# from io import StringIO
# # Add 'src' to Python path so we can import main.py
# sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
# from main import run_pipeline
# st.set_page_config(page_title="π° AI News Analyzer", layout="wide")
# st.title("π§ AI-Powered Investing News Analyzer")
# # === API Key Input ===
# st.subheader("π API Keys")
# openai_api_key = st.text_input("OpenAI API Key", type="password").strip()
# tavily_api_key = st.text_input("Tavily API Key", type="password").strip()
# # === Topic Input ===
# st.subheader("π Topics of Interest")
# topics_data = []
# with st.form("topics_form"):
# topic_count = st.number_input("How many topics?", min_value=1, max_value=10, value=1, step=1)
# for i in range(topic_count):
# col1, col2 = st.columns(2)
# with col1:
# topic = st.text_input(f"Topic {i+1}", key=f"topic_{i}")
# with col2:
# days = st.number_input(f"Timespan (days)", min_value=1, max_value=30, value=7, key=f"days_{i}")
# topics_data.append({"topic": topic, "timespan_days": days})
# submitted = st.form_submit_button("Run Analysis")
# # === Submission logic ===
# if submitted:
# if not openai_api_key or not tavily_api_key or not all([td['topic'] for td in topics_data]):
# st.warning("Please fill in all fields.")
# else:
# os.environ["OPENAI_API_KEY"] = openai_api_key
# os.environ["TAVILY_API_KEY"] = tavily_api_key
# df = pd.DataFrame(topics_data)
# with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp_csv:
# df.to_csv(tmp_csv.name, index=False)
# csv_path = tmp_csv.name
# # === UI Elements ===
# spinner_box = st.empty() # For rotating messages
# log_box = st.empty() # For logs
# logs = []
# rotating = True
# def log(msg):
# logs.append(msg)
# log_box.code("\n".join(logs))
# # === Rotating UI Messages ===
# def rotating_messages():
# messages = itertools.cycle([
# "π Searching financial news...",
# "π§ Running language models...",
# "π Analyzing investor sentiment...",
# "π Summarizing key takeaways...",
# "πΉ Building markdown reports..."
# ])
# while rotating:
# spinner_box.markdown(f"β³ {next(messages)}")
# time.sleep(1.5)
# rotator_thread = Thread(target=rotating_messages)
# rotator_thread.start()
# try:
# # Check API Keys
# import openai
# openai.OpenAI(api_key=openai_api_key).models.list()
# log("β
OpenAI API key is valid.")
# import requests
# tavily_test = requests.post(
# "https://api.tavily.com/search",
# headers={"Authorization": f"Bearer {tavily_api_key}"},
# json={"query": "test", "days": 1, "max_results": 1}
# )
# if tavily_test.status_code == 200:
# log("β
Tavily API key is valid.")
# else:
# raise ValueError(f"Tavily error: {tavily_test.status_code} - {tavily_test.text}")
# # Run the full pipeline
# log("π Running analysis pipeline...")
# output_path = run_pipeline(csv_path, tavily_api_key, progress_callback=log)
# rotating = False
# rotator_thread.join()
# spinner_box.success("β
Analysis complete!")
# if output_path and isinstance(output_path, list):
# for path in output_path:
# if os.path.exists(path):
# with open(path, 'r', encoding='utf-8') as file:
# html_content = file.read()
# filename = os.path.basename(path)
# st.download_button(
# label=f"π₯ Download {filename}",
# data=html_content,
# file_name=filename,
# mime="text/html"
# )
# st.components.v1.html(html_content, height=600, scrolling=True)
# else:
# st.error("β No reports were generated.")
# except Exception as e:
# rotating = False
# rotator_thread.join()
# spinner_box.error("β Failed.")
# log_box.error(f"β Error: {e}")
|