Sigrid De los Santos
adding new tabs to the project as per Theo feedback
3778f9f
raw
history blame
7.55 kB
import os
import pandas as pd
from datetime import datetime
from md_html import convert_single_md_to_html as convert_md_to_html
from news_analysis import fetch_deep_news, generate_value_investor_report
from csv_utils import detect_changes
from fin_interpreter import analyze_article # For FinBERT + FinGPT signals
# === Paths ===
BASE_DIR = os.path.dirname(os.path.dirname(__file__))
DATA_DIR = os.path.join(BASE_DIR, "data")
HTML_DIR = os.path.join(BASE_DIR, "html")
CSV_PATH = os.path.join(BASE_DIR, "investing_topics.csv")
os.makedirs(DATA_DIR, exist_ok=True)
os.makedirs(HTML_DIR, exist_ok=True)
def run_pipeline(topics, openai_api_key=None, tavily_api_key=None):
"""
Main pipeline:
1. Fetch articles for topics.
2. Analyze with FinBERT + FinGPT.
3. Generate markdown report.
4. Return (report_md, articles_df, insights_df).
"""
all_articles = []
# Fetch and analyze articles
for topic, days in topics:
try:
articles = fetch_deep_news(topic, days, tavily_api_key)
for article in articles:
sentiment, confidence, signal = analyze_article(article.get("summary", ""))
all_articles.append({
"Title": article.get("title"),
"URL": article.get("url"),
"Summary": article.get("summary"),
"Priority": article.get("priority", "Low"),
"Date": article.get("date"),
"Company": article.get("company", topic), # fallback if no company detected
"Sentiment": sentiment,
"Confidence": confidence,
"Signal": signal
})
except Exception as e:
print(f"Error fetching/analyzing articles for topic '{topic}': {e}")
# Convert to DataFrame
articles_df = pd.DataFrame(all_articles)
# Generate Markdown report (existing behavior)
report_md = ""
try:
report_md = generate_value_investor_report(all_articles, openai_api_key)
except Exception as e:
print(f"Error generating report: {e}")
report_md = "Error generating report."
# Build insights (aggregated by company)
insights_df = build_company_insights(articles_df)
return report_md, articles_df, insights_df
def build_company_insights(articles_df):
"""
Aggregates article data into a company-level insights table.
Columns: Company, Mentions, Avg Sentiment, Top Signal, Sector
"""
if articles_df.empty:
return pd.DataFrame()
# Simple aggregation
grouped = (
articles_df
.groupby("Company")
.agg({
"Title": "count",
"Sentiment": lambda x: x.mode()[0] if not x.mode().empty else "Neutral",
"Signal": lambda x: x.mode()[0] if not x.mode().empty else "Watch"
})
.reset_index()
.rename(columns={"Title": "Mentions"})
)
# Add a placeholder Sector column (can improve later with classification)
grouped["Sector"] = grouped["Company"].apply(lambda c: detect_sector_from_company(c))
return grouped
def detect_sector_from_company(company_name):
"""
Simple keyword-based sector detection (can be replaced with GPT classification).
"""
company_name = company_name.lower()
if "energy" in company_name or "nuclear" in company_name:
return "Energy"
elif "fin" in company_name or "bank" in company_name:
return "Finance"
elif "chip" in company_name or "semiconductor" in company_name:
return "Tech Hardware"
else:
return "General"
if __name__ == "__main__":
# Test run (local)
test_topics = [("nuclear energy", 7)]
md, art_df, ins_df = run_pipeline(test_topics)
print(md)
print(art_df.head())
print(ins_df.head())
# import os
# import sys
# from datetime import datetime
# from dotenv import load_dotenv
# import pandas as pd
# from md_html import convert_single_md_to_html as convert_md_to_html
# from news_analysis import fetch_deep_news, generate_value_investor_report
# from csv_utils import detect_changes
# # === Setup Paths ===
# BASE_DIR = os.path.dirname(os.path.dirname(__file__))
# DATA_DIR = os.path.join(BASE_DIR, "data")
# HTML_DIR = os.path.join(BASE_DIR, "html")
# CSV_PATH = os.path.join(BASE_DIR, "investing_topics.csv")
# os.makedirs(DATA_DIR, exist_ok=True)
# os.makedirs(HTML_DIR, exist_ok=True)
# # === Load .env ===
# load_dotenv()
# def build_metrics_box(topic, num_articles):
# now = datetime.now().strftime("%Y-%m-%d %H:%M")
# return f"""
# > Topic: `{topic}`
# > Articles Collected: `{num_articles}`
# > Generated: `{now}`
# >
# """
# def run_value_investing_analysis(csv_path, progress_callback=None):
# current_df = pd.read_csv(csv_path)
# prev_path = os.path.join(BASE_DIR, "investing_topics_prev.csv")
# if os.path.exists(prev_path):
# previous_df = pd.read_csv(prev_path)
# changed_df = detect_changes(current_df, previous_df)
# if changed_df.empty:
# if progress_callback:
# progress_callback("βœ… No changes detected. Skipping processing.")
# return []
# else:
# changed_df = current_df
# new_md_files = []
# for _, row in changed_df.iterrows():
# topic = row.get("topic")
# timespan = row.get("timespan_days", 7)
# msg = f"πŸ” Processing: {topic} ({timespan} days)"
# print(msg)
# if progress_callback:
# progress_callback(msg)
# news = fetch_deep_news(topic, timespan)
# if not news:
# warning = f"⚠️ No news found for: {topic}"
# print(warning)
# if progress_callback:
# progress_callback(warning)
# continue
# report_body = generate_value_investor_report(topic, news)
# image_url = "https://via.placeholder.com/1281x721?text=No+Image+Available"
# image_credit = "Image placeholder"
# metrics_md = build_metrics_box(topic, len(news))
# full_md = metrics_md + report_body
# base_filename = f"{topic.replace(' ', '_').lower()}_{datetime.now().strftime('%Y-%m-%d')}"
# filename = base_filename + ".md"
# filepath = os.path.join(DATA_DIR, filename)
# counter = 1
# while os.path.exists(filepath):
# filename = f"{base_filename}_{counter}.md"
# filepath = os.path.join(DATA_DIR, filename)
# counter += 1
# with open(filepath, "w", encoding="utf-8") as f:
# f.write(full_md)
# new_md_files.append(filepath)
# if progress_callback:
# progress_callback(f"βœ… Markdown saved to: {DATA_DIR}")
# current_df.to_csv(prev_path, index=False)
# return new_md_files
# def run_pipeline(csv_path, tavily_api_key, progress_callback=None):
# os.environ["TAVILY_API_KEY"] = tavily_api_key
# new_md_files = run_value_investing_analysis(csv_path, progress_callback)
# new_html_paths = []
# for md_path in new_md_files:
# convert_md_to_html(md_path, HTML_DIR)
# html_path = os.path.join(HTML_DIR, os.path.basename(md_path).replace(".md", ".html"))
# new_html_paths.append(html_path)
# return new_html_paths
# if __name__ == "__main__":
# md_files = run_value_investing_analysis(CSV_PATH)
# for md in md_files:
# convert_md_to_html(md, HTML_DIR)
# print(f"🌐 All reports converted to HTML at: {HTML_DIR}")