Spaces:
Runtime error
Runtime error
Sigrid De los Santos
commited on
Commit
Β·
0d9c76e
1
Parent(s):
da7cc35
Add matplotlib to requirements
Browse files- src/main.py +37 -59
src/main.py
CHANGED
|
@@ -3,9 +3,6 @@ import sys
|
|
| 3 |
from datetime import datetime
|
| 4 |
from dotenv import load_dotenv
|
| 5 |
import pandas as pd
|
| 6 |
-
from io import BytesIO
|
| 7 |
-
import base64
|
| 8 |
-
import matplotlib.pyplot as plt
|
| 9 |
|
| 10 |
from md_html import convert_single_md_to_html as convert_md_to_html
|
| 11 |
from news_analysis import fetch_deep_news, generate_value_investor_report
|
|
@@ -32,33 +29,16 @@ def build_metrics_box(topic, num_articles):
|
|
| 32 |
>
|
| 33 |
"""
|
| 34 |
|
| 35 |
-
def
|
| 36 |
-
# Placeholder dummy chart
|
| 37 |
-
dates = pd.date_range(end=datetime.today(), periods=7)
|
| 38 |
-
values = [100 + i * 3 for i in range(7)]
|
| 39 |
-
|
| 40 |
-
plt.figure(figsize=(6, 3))
|
| 41 |
-
plt.plot(dates, values, marker='o')
|
| 42 |
-
plt.title(f"π Sentiment Trend: {topic}")
|
| 43 |
-
plt.xlabel("Date")
|
| 44 |
-
plt.ylabel("Sentiment")
|
| 45 |
-
plt.grid(True)
|
| 46 |
-
|
| 47 |
-
buffer = BytesIO()
|
| 48 |
-
plt.savefig(buffer, format='png')
|
| 49 |
-
plt.close()
|
| 50 |
-
buffer.seek(0)
|
| 51 |
-
encoded = base64.b64encode(buffer.read()).decode("utf-8")
|
| 52 |
-
return f""
|
| 53 |
-
|
| 54 |
-
def run_value_investing_analysis(csv_path):
|
| 55 |
current_df = pd.read_csv(csv_path)
|
| 56 |
prev_path = os.path.join(BASE_DIR, "investing_topics_prev.csv")
|
|
|
|
| 57 |
if os.path.exists(prev_path):
|
| 58 |
previous_df = pd.read_csv(prev_path)
|
| 59 |
changed_df = detect_changes(current_df, previous_df)
|
| 60 |
if changed_df.empty:
|
| 61 |
-
|
|
|
|
| 62 |
return []
|
| 63 |
else:
|
| 64 |
changed_df = current_df
|
|
@@ -68,18 +48,25 @@ def run_value_investing_analysis(csv_path):
|
|
| 68 |
for _, row in changed_df.iterrows():
|
| 69 |
topic = row.get("topic")
|
| 70 |
timespan = row.get("timespan_days", 7)
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
news = fetch_deep_news(topic, timespan)
|
| 74 |
if not news:
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
| 76 |
continue
|
| 77 |
|
| 78 |
report_body = generate_value_investor_report(topic, news)
|
| 79 |
-
|
|
|
|
| 80 |
|
| 81 |
metrics_md = build_metrics_box(topic, len(news))
|
| 82 |
-
full_md = metrics_md + report_body
|
| 83 |
|
| 84 |
base_filename = f"{topic.replace(' ', '_').lower()}_{datetime.now().strftime('%Y-%m-%d')}"
|
| 85 |
filename = base_filename + ".md"
|
|
@@ -96,14 +83,15 @@ def run_value_investing_analysis(csv_path):
|
|
| 96 |
|
| 97 |
new_md_files.append(filepath)
|
| 98 |
|
| 99 |
-
|
|
|
|
| 100 |
current_df.to_csv(prev_path, index=False)
|
| 101 |
return new_md_files
|
| 102 |
|
| 103 |
-
def run_pipeline(csv_path, tavily_api_key):
|
| 104 |
os.environ["TAVILY_API_KEY"] = tavily_api_key
|
| 105 |
|
| 106 |
-
new_md_files = run_value_investing_analysis(csv_path)
|
| 107 |
new_html_paths = []
|
| 108 |
|
| 109 |
for md_path in new_md_files:
|
|
@@ -119,18 +107,19 @@ if __name__ == "__main__":
|
|
| 119 |
convert_md_to_html(md, HTML_DIR)
|
| 120 |
print(f"π All reports converted to HTML at: {HTML_DIR}")
|
| 121 |
|
| 122 |
-
|
| 123 |
# import os
|
| 124 |
# import sys
|
| 125 |
# from datetime import datetime
|
| 126 |
# from dotenv import load_dotenv
|
| 127 |
-
# import pandas as pd
|
| 128 |
|
| 129 |
# from image_search import search_unsplash_image
|
| 130 |
# from md_html import convert_single_md_to_html as convert_md_to_html
|
| 131 |
# from news_analysis import fetch_deep_news, generate_value_investor_report
|
|
|
|
|
|
|
| 132 |
# from csv_utils import detect_changes
|
| 133 |
|
|
|
|
| 134 |
# # Setup paths
|
| 135 |
# BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # one level up from src/
|
| 136 |
# DATA_DIR = os.path.join(BASE_DIR, "data")
|
|
@@ -152,16 +141,14 @@ if __name__ == "__main__":
|
|
| 152 |
# >
|
| 153 |
# """
|
| 154 |
|
| 155 |
-
# def run_value_investing_analysis(csv_path
|
| 156 |
# current_df = pd.read_csv(csv_path)
|
| 157 |
# prev_path = os.path.join(BASE_DIR, "investing_topics_prev.csv")
|
| 158 |
-
|
| 159 |
# if os.path.exists(prev_path):
|
| 160 |
# previous_df = pd.read_csv(prev_path)
|
| 161 |
# changed_df = detect_changes(current_df, previous_df)
|
| 162 |
# if changed_df.empty:
|
| 163 |
-
#
|
| 164 |
-
# progress_callback("β
No changes detected. Skipping processing.")
|
| 165 |
# return []
|
| 166 |
# else:
|
| 167 |
# changed_df = current_df
|
|
@@ -171,24 +158,20 @@ if __name__ == "__main__":
|
|
| 171 |
# for _, row in changed_df.iterrows():
|
| 172 |
# topic = row.get("topic")
|
| 173 |
# timespan = row.get("timespan_days", 7)
|
| 174 |
-
|
| 175 |
-
# if progress_callback:
|
| 176 |
-
# progress_callback(f"π Processing: {topic} ({timespan} days)")
|
| 177 |
|
| 178 |
# news = fetch_deep_news(topic, timespan)
|
| 179 |
# if not news:
|
| 180 |
-
#
|
| 181 |
-
# progress_callback(f"β οΈ No news found for: {topic}")
|
| 182 |
# continue
|
| 183 |
|
| 184 |
-
# if progress_callback:
|
| 185 |
-
# progress_callback(f"π§ Analyzing news for: {topic}")
|
| 186 |
-
|
| 187 |
# report_body = generate_value_investor_report(topic, news)
|
|
|
|
| 188 |
|
| 189 |
-
# #
|
| 190 |
-
# image_url =
|
| 191 |
-
|
|
|
|
| 192 |
|
| 193 |
# metrics_md = build_metrics_box(topic, len(news))
|
| 194 |
# full_md = metrics_md + report_body
|
|
@@ -203,39 +186,34 @@ if __name__ == "__main__":
|
|
| 203 |
# filepath = os.path.join(DATA_DIR, filename)
|
| 204 |
# counter += 1
|
| 205 |
|
| 206 |
-
# if progress_callback:
|
| 207 |
-
# progress_callback(f"π Saving markdown for: {topic}")
|
| 208 |
-
|
| 209 |
# with open(filepath, "w", encoding="utf-8") as f:
|
| 210 |
# f.write(full_md)
|
| 211 |
|
| 212 |
# new_md_files.append(filepath)
|
| 213 |
|
| 214 |
-
#
|
| 215 |
-
# progress_callback(f"β
Markdown reports saved to: `{DATA_DIR}`")
|
| 216 |
-
|
| 217 |
# current_df.to_csv(prev_path, index=False)
|
| 218 |
# return new_md_files
|
| 219 |
|
| 220 |
-
|
|
|
|
| 221 |
# os.environ["TAVILY_API_KEY"] = tavily_api_key
|
| 222 |
|
| 223 |
-
# new_md_files = run_value_investing_analysis(csv_path
|
| 224 |
# new_html_paths = []
|
| 225 |
|
| 226 |
# for md_path in new_md_files:
|
| 227 |
-
# if progress_callback:
|
| 228 |
-
# progress_callback(f"π Converting to HTML: {os.path.basename(md_path)}")
|
| 229 |
-
|
| 230 |
# convert_md_to_html(md_path, HTML_DIR)
|
| 231 |
# html_path = os.path.join(HTML_DIR, os.path.basename(md_path).replace(".md", ".html"))
|
| 232 |
# new_html_paths.append(html_path)
|
| 233 |
|
| 234 |
# return new_html_paths
|
| 235 |
|
|
|
|
| 236 |
# if __name__ == "__main__":
|
| 237 |
# md_files = run_value_investing_analysis(CSV_PATH)
|
| 238 |
# for md in md_files:
|
| 239 |
# convert_md_to_html(md, HTML_DIR)
|
| 240 |
# print(f"π All reports converted to HTML at: {HTML_DIR}")
|
| 241 |
|
|
|
|
|
|
| 3 |
from datetime import datetime
|
| 4 |
from dotenv import load_dotenv
|
| 5 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
from md_html import convert_single_md_to_html as convert_md_to_html
|
| 8 |
from news_analysis import fetch_deep_news, generate_value_investor_report
|
|
|
|
| 29 |
>
|
| 30 |
"""
|
| 31 |
|
| 32 |
+
def run_value_investing_analysis(csv_path, progress_callback=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
current_df = pd.read_csv(csv_path)
|
| 34 |
prev_path = os.path.join(BASE_DIR, "investing_topics_prev.csv")
|
| 35 |
+
|
| 36 |
if os.path.exists(prev_path):
|
| 37 |
previous_df = pd.read_csv(prev_path)
|
| 38 |
changed_df = detect_changes(current_df, previous_df)
|
| 39 |
if changed_df.empty:
|
| 40 |
+
if progress_callback:
|
| 41 |
+
progress_callback("β
No changes detected. Skipping processing.")
|
| 42 |
return []
|
| 43 |
else:
|
| 44 |
changed_df = current_df
|
|
|
|
| 48 |
for _, row in changed_df.iterrows():
|
| 49 |
topic = row.get("topic")
|
| 50 |
timespan = row.get("timespan_days", 7)
|
| 51 |
+
msg = f"π Processing: {topic} ({timespan} days)"
|
| 52 |
+
print(msg)
|
| 53 |
+
if progress_callback:
|
| 54 |
+
progress_callback(msg)
|
| 55 |
|
| 56 |
news = fetch_deep_news(topic, timespan)
|
| 57 |
if not news:
|
| 58 |
+
warning = f"β οΈ No news found for: {topic}"
|
| 59 |
+
print(warning)
|
| 60 |
+
if progress_callback:
|
| 61 |
+
progress_callback(warning)
|
| 62 |
continue
|
| 63 |
|
| 64 |
report_body = generate_value_investor_report(topic, news)
|
| 65 |
+
image_url = "https://via.placeholder.com/1281x721?text=No+Image+Available"
|
| 66 |
+
image_credit = "Image placeholder"
|
| 67 |
|
| 68 |
metrics_md = build_metrics_box(topic, len(news))
|
| 69 |
+
full_md = metrics_md + report_body
|
| 70 |
|
| 71 |
base_filename = f"{topic.replace(' ', '_').lower()}_{datetime.now().strftime('%Y-%m-%d')}"
|
| 72 |
filename = base_filename + ".md"
|
|
|
|
| 83 |
|
| 84 |
new_md_files.append(filepath)
|
| 85 |
|
| 86 |
+
if progress_callback:
|
| 87 |
+
progress_callback(f"β
Markdown saved to: {DATA_DIR}")
|
| 88 |
current_df.to_csv(prev_path, index=False)
|
| 89 |
return new_md_files
|
| 90 |
|
| 91 |
+
def run_pipeline(csv_path, tavily_api_key, progress_callback=None):
|
| 92 |
os.environ["TAVILY_API_KEY"] = tavily_api_key
|
| 93 |
|
| 94 |
+
new_md_files = run_value_investing_analysis(csv_path, progress_callback)
|
| 95 |
new_html_paths = []
|
| 96 |
|
| 97 |
for md_path in new_md_files:
|
|
|
|
| 107 |
convert_md_to_html(md, HTML_DIR)
|
| 108 |
print(f"π All reports converted to HTML at: {HTML_DIR}")
|
| 109 |
|
|
|
|
| 110 |
# import os
|
| 111 |
# import sys
|
| 112 |
# from datetime import datetime
|
| 113 |
# from dotenv import load_dotenv
|
|
|
|
| 114 |
|
| 115 |
# from image_search import search_unsplash_image
|
| 116 |
# from md_html import convert_single_md_to_html as convert_md_to_html
|
| 117 |
# from news_analysis import fetch_deep_news, generate_value_investor_report
|
| 118 |
+
|
| 119 |
+
# import pandas as pd
|
| 120 |
# from csv_utils import detect_changes
|
| 121 |
|
| 122 |
+
|
| 123 |
# # Setup paths
|
| 124 |
# BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # one level up from src/
|
| 125 |
# DATA_DIR = os.path.join(BASE_DIR, "data")
|
|
|
|
| 141 |
# >
|
| 142 |
# """
|
| 143 |
|
| 144 |
+
# def run_value_investing_analysis(csv_path):
|
| 145 |
# current_df = pd.read_csv(csv_path)
|
| 146 |
# prev_path = os.path.join(BASE_DIR, "investing_topics_prev.csv")
|
|
|
|
| 147 |
# if os.path.exists(prev_path):
|
| 148 |
# previous_df = pd.read_csv(prev_path)
|
| 149 |
# changed_df = detect_changes(current_df, previous_df)
|
| 150 |
# if changed_df.empty:
|
| 151 |
+
# print("β
No changes detected. Skipping processing.")
|
|
|
|
| 152 |
# return []
|
| 153 |
# else:
|
| 154 |
# changed_df = current_df
|
|
|
|
| 158 |
# for _, row in changed_df.iterrows():
|
| 159 |
# topic = row.get("topic")
|
| 160 |
# timespan = row.get("timespan_days", 7)
|
| 161 |
+
# print(f"\nπ Processing: {topic} ({timespan} days)")
|
|
|
|
|
|
|
| 162 |
|
| 163 |
# news = fetch_deep_news(topic, timespan)
|
| 164 |
# if not news:
|
| 165 |
+
# print(f"β οΈ No news found for: {topic}")
|
|
|
|
| 166 |
# continue
|
| 167 |
|
|
|
|
|
|
|
|
|
|
| 168 |
# report_body = generate_value_investor_report(topic, news)
|
| 169 |
+
# from image_search import search_unsplash_image
|
| 170 |
|
| 171 |
+
# # Later inside your loop
|
| 172 |
+
# image_url, image_credit = search_unsplash_image(topic)
|
| 173 |
+
|
| 174 |
+
# #image_url, image_credit = search_unsplash_image(topic, os.getenv("OPENAI_API_KEY"))
|
| 175 |
|
| 176 |
# metrics_md = build_metrics_box(topic, len(news))
|
| 177 |
# full_md = metrics_md + report_body
|
|
|
|
| 186 |
# filepath = os.path.join(DATA_DIR, filename)
|
| 187 |
# counter += 1
|
| 188 |
|
|
|
|
|
|
|
|
|
|
| 189 |
# with open(filepath, "w", encoding="utf-8") as f:
|
| 190 |
# f.write(full_md)
|
| 191 |
|
| 192 |
# new_md_files.append(filepath)
|
| 193 |
|
| 194 |
+
# print(f"β
Markdown saved to: {DATA_DIR}")
|
|
|
|
|
|
|
| 195 |
# current_df.to_csv(prev_path, index=False)
|
| 196 |
# return new_md_files
|
| 197 |
|
| 198 |
+
|
| 199 |
+
# def run_pipeline(csv_path, tavily_api_key):
|
| 200 |
# os.environ["TAVILY_API_KEY"] = tavily_api_key
|
| 201 |
|
| 202 |
+
# new_md_files = run_value_investing_analysis(csv_path)
|
| 203 |
# new_html_paths = []
|
| 204 |
|
| 205 |
# for md_path in new_md_files:
|
|
|
|
|
|
|
|
|
|
| 206 |
# convert_md_to_html(md_path, HTML_DIR)
|
| 207 |
# html_path = os.path.join(HTML_DIR, os.path.basename(md_path).replace(".md", ".html"))
|
| 208 |
# new_html_paths.append(html_path)
|
| 209 |
|
| 210 |
# return new_html_paths
|
| 211 |
|
| 212 |
+
|
| 213 |
# if __name__ == "__main__":
|
| 214 |
# md_files = run_value_investing_analysis(CSV_PATH)
|
| 215 |
# for md in md_files:
|
| 216 |
# convert_md_to_html(md, HTML_DIR)
|
| 217 |
# print(f"π All reports converted to HTML at: {HTML_DIR}")
|
| 218 |
|
| 219 |
+
|