Spaces:
Runtime error
Runtime error
Add Application file
Browse files
app.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from statistics import mean
|
| 2 |
+
import random
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from transformers import BertModel, BertTokenizerFast
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
import gradio as gr
|
| 9 |
+
|
| 10 |
+
threshold = 0.4
|
| 11 |
+
|
| 12 |
+
tokenizer = BertTokenizerFast.from_pretrained("setu4993/LaBSE")
|
| 13 |
+
model = BertModel.from_pretrained("setu4993/LaBSE")
|
| 14 |
+
model = model.eval()
|
| 15 |
+
|
| 16 |
+
order_food_ex = [
|
| 17 |
+
"food",
|
| 18 |
+
"I am hungry, I want to order food",
|
| 19 |
+
"How do I order food",
|
| 20 |
+
"What are the food options",
|
| 21 |
+
"I need dinner",
|
| 22 |
+
"I want lunch",
|
| 23 |
+
"What are the menu options",
|
| 24 |
+
"I want a hamburger"
|
| 25 |
+
]
|
| 26 |
+
|
| 27 |
+
talk_to_human_ex = [
|
| 28 |
+
"I need to talk to someone",
|
| 29 |
+
"Connect me with a human",
|
| 30 |
+
"I need to speak with a person",
|
| 31 |
+
"Put me on with a human",
|
| 32 |
+
"Connect me with customer service",
|
| 33 |
+
"human"
|
| 34 |
+
]
|
| 35 |
+
|
| 36 |
+
def embed(text, tokenizer, model):
|
| 37 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True)
|
| 38 |
+
with torch.no_grad():
|
| 39 |
+
outputs = model(**inputs)
|
| 40 |
+
return outputs.pooler_output
|
| 41 |
+
|
| 42 |
+
def similarity(embeddings_1, embeddings_2):
|
| 43 |
+
normalized_embeddings_1 = F.normalize(embeddings_1, p=2)
|
| 44 |
+
normalized_embeddings_2 = F.normalize(embeddings_2, p=2)
|
| 45 |
+
return torch.matmul(
|
| 46 |
+
normalized_embeddings_1, normalized_embeddings_2.transpose(0, 1)
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
order_food_embed = [embed(x, tokenizer, model) for x in order_food_ex]
|
| 50 |
+
talk_to_human_embed = [embed(x, tokenizer, model) for x in talk_to_human_ex]
|
| 51 |
+
|
| 52 |
+
def chat(message, history):
|
| 53 |
+
history = history or []
|
| 54 |
+
message_embed = embed(message, tokenizer, model)
|
| 55 |
+
order_sim = []
|
| 56 |
+
for em in order_food_embed:
|
| 57 |
+
order_sim.append(float(similarity(em, message_embed)))
|
| 58 |
+
human_sim = []
|
| 59 |
+
for em in talk_to_human_embed:
|
| 60 |
+
human_sim.append(float(similarity(em, message_embed)))
|
| 61 |
+
if mean(order_sim) > threshold:
|
| 62 |
+
response = random.choice([
|
| 63 |
+
"We have hamburgers or pizza! Which one do you want?",
|
| 64 |
+
"Do you want a hamburger or a pizza?"])
|
| 65 |
+
elif mean(human_sim) > threshold:
|
| 66 |
+
response = random.choice([
|
| 67 |
+
"Sure, a customer service agent will jump into this convo shortly!",
|
| 68 |
+
"No problem. Let me forward on this conversation to a person that can respond."])
|
| 69 |
+
else:
|
| 70 |
+
response = "Sorry, I didn't catch that. Could your rephrase?"
|
| 71 |
+
history.append((message, response))
|
| 72 |
+
return history, history
|
| 73 |
+
|
| 74 |
+
iface = gr.Interface(
|
| 75 |
+
chat,
|
| 76 |
+
["text", "state"],
|
| 77 |
+
["chatbot", "state"],
|
| 78 |
+
allow_screenshot=False,
|
| 79 |
+
allow_flagging="never",
|
| 80 |
+
)
|
| 81 |
+
iface.launch()
|