File size: 17,086 Bytes
12efa10
 
 
42d6492
01cd9ce
d981793
01cd9ce
 
12efa10
 
 
 
 
 
 
 
653f70c
12efa10
 
 
 
 
 
 
 
42d6492
12efa10
42d6492
 
12efa10
 
 
 
01cd9ce
 
 
12efa10
 
 
 
 
 
4db3879
12efa10
 
 
 
 
 
 
 
 
 
 
 
 
 
4db3879
12efa10
 
 
 
 
 
 
 
 
ca48878
 
 
 
 
6b21330
7e61b6b
ca48878
6b21330
ca48878
 
7e61b6b
ca48878
 
7e61b6b
 
 
6b21330
 
 
12efa10
ca48878
 
 
7e61b6b
 
 
378e964
ca48878
e60f602
6b21330
 
7e61b6b
ca48878
 
 
6b21330
ca48878
 
bdeb2a3
aaf9571
01cd9ce
03d9dfb
6b21330
e1a8888
378e964
e60f602
ca48878
 
 
 
 
 
 
 
 
 
 
6b21330
 
 
 
 
ca48878
 
 
 
 
 
 
 
bdeb2a3
ca48878
 
 
 
 
 
 
 
 
 
 
 
 
 
7e61b6b
6b21330
ca48878
 
18ef3dc
ca48878
 
 
 
 
 
 
6b21330
ca48878
 
 
e1a8888
bcbf716
 
 
 
bdeb2a3
bcbf716
 
 
12efa10
ca48878
 
 
12efa10
01cd9ce
 
 
 
 
 
 
 
 
 
 
 
 
 
6b21330
01cd9ce
 
6b21330
01cd9ce
1cda853
 
01cd9ce
 
 
 
1cda853
01cd9ce
6b21330
1cda853
cb2c8cb
1cda853
6b21330
01cd9ce
 
 
 
 
6b21330
01cd9ce
 
 
 
 
2fe1d39
a0ce5c3
01cd9ce
 
 
2fe1d39
a92eec7
01cd9ce
 
 
2fe1d39
 
 
 
01cd9ce
 
 
 
 
2d5cded
2fe1d39
01cd9ce
 
 
 
 
 
 
d981793
01cd9ce
 
d981793
 
 
 
2fe1d39
d981793
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01cd9ce
 
12efa10
 
0e0c765
98e8d9a
12efa10
 
ca48878
12efa10
ca48878
 
 
 
 
 
 
01cd9ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d981793
 
 
cb2c8cb
aaf9571
 
 
cb2c8cb
aaf9571
cb2c8cb
 
 
 
 
01cd9ce
d981793
 
fcef1fd
d981793
cb2c8cb
 
 
 
 
 
 
 
d981793
 
 
 
 
 
 
 
12efa10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaf9571
d981793
12efa10
 
 
 
 
 
b1b8113
12efa10
 
 
653f70c
 
b1b8113
12efa10
 
ba3e489
12efa10
852dbdd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
#from huggingface_hub import snapshot_download
import re
import plotly.graph_objects as go



from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
    FOOTER_TEXT
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
   # ModelType,
    fields,
    #WeightType,
    #Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
from src.leaderboard.read_evals import get_model_answers_html_file

skills = ['MMLU', 'General Knowledge', 'Reasoning & Math', 'Translation (incl Dialects)', 'Trust & Safety', 'Writing (incl Dialects)', 'RAG QA', 'Reading Comprehension', 'Arabic Language & Grammar', 'Diacritization', 'Dialect Detection', 'Sentiment Analysis', 'Summarization', 'Instruction Following', 'Transliteration', 'Paraphrasing', 'Entity Extraction', 'Long Context', 'Coding', 'Hallucination', 'Function Calling', 'Structuring']


def restart_space():
    API.restart_space(repo_id=REPO_ID)

### Space initialisation
"""
try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()
try:
    print(EVAL_RESULTS_PATH)
    snapshot_download(
        repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()
"""

LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)

(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)

def hide_skill_columns(dataframe, exceptions=[]):
    return dataframe[[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default or c.name in exceptions]]


def perform_cell_formatting(dataframe):
    
    styler = dataframe.style.format(precision=2, decimal=".").apply(
        lambda rows: [
            "background-color: red;color: white !important" if (value >0) else "color: green !important;" for value in rows
        ],
        subset=["Contamination Score"],
        axis=1 
    )

    return styler
        

def make_column_bold(df_col):
    return df_col.apply(lambda x: "<b>"+str(x)+"</b>")

def init_leaderboard(dataframe):

    dataframe = hide_skill_columns(dataframe)


    dataframe.loc[:,"Benchmark Score (0-10)"] = make_column_bold(dataframe["Benchmark Score (0-10)"])

     
    styler = perform_cell_formatting(dataframe)




    return gr.Dataframe(
            value=styler,
            datatype="markdown",
            wrap=False,
            show_fullscreen_button=False,
            interactive=False,
            column_widths=[30,50,40,150,60,60,60],
            max_height=450,
            elem_classes="leaderboard_col_style",
            show_search="filter",
            max_chars=None
        )


def init_skill_leaderboard(dataframe):

    

    ## create selector for model skills, based on the selector filter the dataframe

    skills_dropdown = gr.Dropdown(choices=skills, label="Select Skill", value=skills[0])

    def filter_dataframe(skill):
        filtered_df = dataframe.sort_values(by=[skill], ascending=False).reset_index(drop=True)
        filtered_df = hide_skill_columns(filtered_df, exceptions=[skill])
        new_skill_name = skill+" Score"
        filtered_df.rename(columns={skill: new_skill_name}, inplace=True)
        filtered_df[new_skill_name] = make_column_bold(filtered_df[new_skill_name])
        ## reorder columns of filtered_df and insert skill in the middle
        filtered_df = filtered_df[list(filtered_df.columns[:4]) + [new_skill_name] + list(filtered_df.columns[4:-1])]
        filtered_df["Rank"] = range(1, len(filtered_df) + 1)
        styler = perform_cell_formatting(filtered_df)
        return gr.Dataframe(
            value=styler,
            datatype="markdown",
            wrap=True,
            show_fullscreen_button=False,
            interactive=False,
            column_widths=[30,50,40,150,60,60,60,80],
            max_height=420,
            elem_classes="leaderboard_col_style"
        )

    leaderboard_by_skill = filter_dataframe(skills[0])
    skills_dropdown.change(filter_dataframe, inputs=skills_dropdown, outputs=leaderboard_by_skill)
    return leaderboard_by_skill



def init_size_leaderboard(dataframe):

    dataframe = hide_skill_columns(dataframe)

    dataframe.loc[:,"Benchmark Score (0-10)"] = make_column_bold(dataframe["Benchmark Score (0-10)"])

    size_keys = ["Large","Medium","Small","Nano"]

    size_names = ["Large (More than 35B Parameter)","Medium (~35B)","Small (~10B)","Nano (~3B)"]
    sizes_dropdown = gr.Dropdown(choices=size_names, label="Select Model Size", value=size_names[0])

    def filter_dataframe(size_name):
        ##map size name to size key
        size_name_mapped_to_key = size_keys[size_names.index(size_name)]
        ##slice array from 0 to index of size
        size_list = size_keys[size_keys.index(size_name_mapped_to_key):]
        filtered_df = dataframe[dataframe["Size"].isin(size_list)].reset_index(drop=True)
        filtered_df["Rank"] = range(1, len(filtered_df) + 1)
        styler = perform_cell_formatting(filtered_df)
        return gr.Dataframe(
            value=styler,
            datatype="markdown",
            wrap=True,
            show_fullscreen_button=False,
            interactive=False,
            column_widths=[30,50,40,150,60,60,60],
            max_height=420,
            elem_classes="leaderboard_col_style"
        )

    leaderboard_by_skill = filter_dataframe(size_names[0])
    sizes_dropdown.change(filter_dataframe, inputs=sizes_dropdown, outputs=leaderboard_by_skill)
    return leaderboard_by_skill

def strip_html_tags(model_name):
        return re.sub('<[^<]+?>', '', model_name)
    


def get_model_info_blocks(chosen_model_name):

    model_names = LEADERBOARD_DF["Model Name"].unique().tolist()
    model_names_clean = [strip_html_tags(model_name) for model_name in model_names]
    
    model_name_full = model_names[model_names_clean.index(chosen_model_name)]
    filtered_df = LEADERBOARD_DF[LEADERBOARD_DF["Model Name"]==model_name_full].reset_index(drop=True)
    skills_bar_df = pd.DataFrame({
        'Skills': skills,
        'Benchmark Score (0-10)': filtered_df[skills].values[0]
    })

    skills_bar_df = skills_bar_df.sort_values(by=['Benchmark Score (0-10)'], ascending=False).reset_index(drop=True)

    def get_metric_html(metric_title):
        return f"<div class='deep-dive-metric'><b>{metric_title}</b><span class='ddm-value'>{{}}</div>"
    
    with gr.Accordion("Model Details"):

        with gr.Row():
            model_name = gr.HTML(get_metric_html("Model Name").format(chosen_model_name))
        with gr.Row():
            benchmark_score = gr.HTML(get_metric_html("Benchmark Score (0-10)").format(str(filtered_df["Benchmark Score (0-10)"][0])))
            rank = gr.HTML(get_metric_html("Benchmark Rank").format(filtered_df["Rank"][0]))
            speed = gr.HTML(get_metric_html("Speed <br/>(words per second)").format(filtered_df["Speed (words/sec)"][0]))
            contamination =  gr.HTML(get_metric_html("Contamination Score").format(filtered_df["Contamination Score"][0]))
            size =  gr.HTML(get_metric_html("Size Category").format(filtered_df["Size"][0]))

    with gr.Row():
        skills_bar = gr.BarPlot(
                        value=skills_bar_df,
                        x="Skills",
                        y="Benchmark Score (0-10)",
                        width=500,
                        height=500,
                        x_label_angle=45,
                        color="Skills",
                        color_title=None,
                        label=f"{chosen_model_name} model skills",
                        sort="-y"
                    )
        

    html_file_content,download_file_path = get_model_answers_html_file(EVAL_RESULTS_PATH, chosen_model_name)

    if html_file_content == "EMPTY":
        answers_html = gr.Markdown("")
    else:
        with gr.Row():
            gr.Markdown(f"""
                <a href='{download_file_path}' target='_blank'>Download model answers here</a>
                """)
        with gr.Row():

            ##strip style and script tags from html
            html_file_content = re.sub('<style.*?>.*?</style>', '', html_file_content, flags=re.DOTALL)
            html_file_content = re.sub('<script.*?>.*?</script>', '', html_file_content, flags=re.DOTALL)
            html_file_content = html_file_content.replace('<html lang="ar" dir="rtl">','<html>')
  
            answers_html = gr.HTML(html_file_content,max_height=500,show_label=True,
                                    label="Model Responses", container=True, elem_classes="model_responses_container")
                
    
    return model_name,benchmark_score,rank,speed,contamination,size,skills_bar,answers_html


    

def init_compare_tab(dataframe):

    model_names = dataframe["Model Name"].unique().tolist()
    model_names_clean = [strip_html_tags(model_name) for model_name in model_names]
    with gr.Row():
        models_dropdown = gr.Dropdown(choices=model_names_clean, label="Select Models",
                                       value=model_names_clean[0], multiselect=True)
        

    def draw_radar_chart(models):
        print(models)


        fig = go.Figure()

        for model_name in models:
            model_name_full = model_names[model_names_clean.index(model_name)]
            skill_scores = dataframe[dataframe["Model Name"] == model_name_full][skills].values[0]
     
            fig.add_trace(go.Scatterpolar(
                r=skill_scores,
                theta=skills,
                fill='toself',
                name=model_name,
                
            ))

        fig.update_layout(
            polar=dict(
                radialaxis=dict(visible=True)
            ),
            showlegend=True,
            height=500,
            width=900,
            margin=dict(l=0, r=0, t=40, b=40),
            legend=dict(
                orientation="h",
                yanchor="bottom",
                y=-0.2,
                xanchor="center",
                x=0.5
            )

            
        )

        return gr.Plot(value=fig)
        
    radar_chart = draw_radar_chart(models_dropdown.value)
    models_dropdown.change(draw_radar_chart, inputs=models_dropdown, outputs=radar_chart)

           
    return radar_chart


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE, elem_classes="abl_header")
    gr.HTML(INTRODUCTION_TEXT, elem_classes="abl_desc_text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… Leaderboard - Top Models", elem_id="llm-benchmark-tab-table", id=0):
            leaderboard = init_leaderboard(LEADERBOARD_DF)
        
        with gr.TabItem("πŸ… Top by Size", elem_id="llm-benchmark-tab-size", id=1):
            leaderboard = init_size_leaderboard(LEADERBOARD_DF)

        with gr.TabItem("πŸ… Top by Skill", elem_id="llm-benchmark-tab-skills", id=2):
            leaderboard = init_skill_leaderboard(LEADERBOARD_DF)

        with gr.TabItem("βš–οΈ Compare", elem_id="llm-benchmark-tab-compare", id=3):
            init_compare_tab(LEADERBOARD_DF)

        with gr.TabItem("πŸ”¬ Deep Dive", elem_id="llm-benchmark-tab-compare", id=4):


            model_names = LEADERBOARD_DF["Model Name"].unique().tolist()
            model_names_clean = [strip_html_tags(model_name) for model_name in model_names]
            with gr.Row():
                models_dropdown = gr.Dropdown(choices=model_names_clean, label="Select Model", value=model_names_clean[0])


            model_name,benchmark_score,rank,speed,contamination,size,skills_bar,answers_html  = get_model_info_blocks(models_dropdown.value)

            models_dropdown.change(get_model_info_blocks, inputs=models_dropdown, outputs=[model_name,benchmark_score,rank,speed,contamination,size,skills_bar,answers_html])
  
        with gr.TabItem("πŸš€ Submit here", elem_id="llm-benchmark-tab-submit", id=5):
            with gr.Row():
                gr.Markdown("# Submit your model", elem_classes="markdown-text")
            with gr.Column():
                gr.Markdown("### Please confirm that you understand and accept the conditions below before submitting your model:")
                prereqs_checkboxes = gr.CheckboxGroup(["I have successfully run the ABB benchmark script on my model using my own infrastructure, and I am not using the Leaderboard for testing purposes",
                                  "I understand that my account/org has only one submission per month",
                                  "I understand that I can't submit models more than 15B parameters (learn more in the FAQ)",
                                  "I understand that submitting contaminated models, or models intended to test the contamination score, may result in actions from our side, including banning. We also reserve the right to delete any model we deem contaminated without prior notice"], 
                                  label=None, info=None,
                                  elem_classes="submit_prereq_checkboxes_container",
                                  container=False)
                
           

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(label="Model name", placeholder="org/model-name" )
                   
            submit_button = gr.Button("Submit Eval", variant="huggingface", interactive=False )

            prereqs_checkboxes.change(
                    fn=lambda choices: gr.update(interactive=len(choices) == 4),
                    inputs=prereqs_checkboxes,
                    outputs=submit_button
                )
            
            submission_result = gr.Markdown()
            submit_button.click(
                add_new_eval,
                [
                    model_name_textbox,
                ],
                submission_result,
            )
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

                with gr.Column():
                    with gr.Accordion(
                        f"βœ… Finished Evaluations ({len(finished_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            finished_eval_table = gr.components.Dataframe(
                                value=finished_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
                    with gr.Accordion(
                        f"πŸ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            running_eval_table = gr.components.Dataframe(
                                value=running_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )

                    with gr.Accordion(
                        f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            pending_eval_table = gr.components.Dataframe(
                                value=pending_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )

        with gr.TabItem("πŸ“ FAQ", elem_id="llm-benchmark-tab-faq", id=6):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=10,
                elem_id="citation-button",
                show_copy_button=True,
            )
    
    with gr.Row():
        gr.HTML(FOOTER_TEXT)

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch(ssr_mode=False)