File size: 5,912 Bytes
12efa10
 
c6b3925
d800998
12efa10
 
 
 
 
 
 
 
582e545
12efa10
 
 
 
 
 
d800998
12efa10
 
 
 
 
 
fcef1fd
 
12efa10
 
 
 
 
 
 
 
d800998
 
 
dcc7731
fcef1fd
 
c6b3925
dcc7731
c6b3925
dcc7731
 
c6b3925
 
 
 
 
 
fcef1fd
c6b3925
fcef1fd
 
c6b3925
dcc7731
12efa10
 
dcc7731
12efa10
fcef1fd
 
 
c6b3925
dcc7731
12efa10
aaf9571
fcef1fd
 
 
12efa10
 
 
 
fcef1fd
 
 
 
12efa10
 
 
fcef1fd
 
c6b3925
fcef1fd
c6b3925
 
 
 
 
aaf9571
c6b3925
 
 
 
 
 
 
fcef1fd
c6b3925
 
fcef1fd
c6b3925
 
fcef1fd
c6b3925
 
 
dcc7731
aaf9571
fcef1fd
12efa10
 
f81f755
12efa10
 
 
f81f755
12efa10
 
 
 
 
 
 
fcef1fd
 
12efa10
 
 
 
dcc7731
12efa10
 
 
 
 
261867e
3b20ce8
f81f755
 
582e545
3b20ce8
14eb45b
 
3b20ce8
 
 
 
14eb45b
 
f81f755
e1bc568
dcc7731
e1bc568
a8b74be
14eb45b
aaf9571
fcef1fd
 
 
14eb45b
f81f755
 
 
14eb45b
3b20ce8
 
14eb45b
f81f755
 
14eb45b
261867e
1bbf089
 
 
 
 
 
 
f81f755
1bbf089
 
 
12efa10
 
 
f81f755
fcef1fd
2fe1d39
12efa10
fcef1fd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import json
import os
from datetime import datetime, timedelta, timezone
import gradio as gr
from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
from src.submission.check_validity import (
    already_submitted_models,
    check_model_card,
    get_model_size,
    is_model_on_hub,
)
from huggingface_hub import hf_hub_download

REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None

def add_new_eval(
    model: str,
    progress=gr.Progress()
):
    global REQUESTED_MODELS
    global USERS_TO_SUBMISSION_DATES
    if not REQUESTED_MODELS:
        REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)

    yield  "..."

    user_name = ""
    model_path = model
    if "/" in model:
        user_name = model.split("/")[0]
        model_path = model.split("/")[1]

    current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")


    progress(0.1, desc=f"Checking model {model} on hub")

    if not is_model_on_hub(model_name=model, token=TOKEN, test_tokenizer=True):
        yield styled_error("Model does not exist on HF Hub. Please select a valid model name.")
        return


    progress(0.2, desc=f"Checking for banned orgs")
    
    ##check for org banning
    banned_orgs = [{
        'org_name':'TEMPLATE',
        'banning_reason':'Submitting contaminated models'
    }]

    if user_name in [banned_org['org_name'] for banned_org in banned_orgs]:
        yield styled_error(
            f"Your org  \"{user_name}\" is banned from submitting models on ABL. If you think this is a mistake then please contact [email protected]"
        )   
        return

   
    # Is the model info correctly filled?
    try:
        model_info = API.model_info(repo_id=model)
    except Exception:
        yield styled_error("Could not get your model information. Please fill it up properly.")
        return
    
    progress(0.3, desc=f"Checking model size")
    model_size = get_model_size(model_info=model_info)

    if model_size>15:
        yield styled_error("We currently accept community-submitted models up to 15 billion parameters only. If you represent an organization then please contact us at [email protected]")
        return
  
    # Were the model card and license filled?
    try:
        license = model_info.cardData["license"]
    except Exception:
        yield styled_error("Please select a license for your model")
        return

    progress(0.5, desc=f"Checking model card")

    modelcard_OK, error_msg = check_model_card(model)
    if not modelcard_OK:
        yield styled_error(error_msg)
        return
    
 

    ##check if org have submitted in the last 30 days
    progress(0.6, desc=f"Checking last submission date")
    previous_user_submissions = USERS_TO_SUBMISSION_DATES.get(user_name)

    if previous_user_submissions:

        previous_user_submission_dates = [datetime.strptime(date.replace("T"," ").split(" ")[0], "%Y-%m-%d") for date in previous_user_submissions]
        previous_user_submission_dates.sort(reverse=True)
        most_recent_submission = previous_user_submission_dates[0]

        time_since_last_submission = datetime.now() - most_recent_submission
        if time_since_last_submission < timedelta(days=30):
            yield styled_warning(
                f"Your org \"{user_name}\" have already submitted a model in the last 30 days. Please wait before submitting another model. For exceptions please contact [email protected]"
            )
            return
            

 
    progress(0.8, desc=f"Checking same model submissions")

    # Check for duplicate submission
    if f"{model}" in REQUESTED_MODELS:
        yield styled_warning("This model has already been submitted.")
        return

    # Seems good, creating the eval
    print("Preparing a new eval")

    eval_entry = {
        "model": model,
        "model_sha": model_info.sha,
        "status": "PENDING",
        "submitted_time": current_time,
        "likes": model_info.likes,
        "params": model_size,
        "license": license,
    }


    progress(0.9, desc=f"Creating Eval ...")

    print("Creating eval file")
    OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
    os.makedirs(OUT_DIR, exist_ok=True)
    out_path = f"{OUT_DIR}/{model_path}_eval_request.json"

    with open(out_path, "w") as f:
        f.write(json.dumps(eval_entry))


    ##update queue file
    queue_file_path = "./eval_queue.json"

    ## download queue_file from repo using HuggingFace hub API, update it and upload again
    queue_file = hf_hub_download(
        filename=queue_file_path,
        repo_id=QUEUE_REPO,
        repo_type="space",
        token=TOKEN
    )   

    
    with open(queue_file, "r") as f:
        queue_data = json.load(f)

    queue_len = len(queue_data)
    

    if queue_len == 0:
        queue_data = []
    elif queue_len >= 1:
        yield styled_warning("The evaluation queue is full at the moment. Please try again in one hour")
        return
    
    queue_data.append(eval_entry)


    print("Updating eval queue file")
    API.upload_file(
        path_or_fileobj=json.dumps(queue_data, indent=2).encode("utf-8"),
        path_in_repo=queue_file_path,
        repo_id=QUEUE_REPO,
        repo_type="space",
        commit_message=f"Add {model} to eval queue"
    )
        

    print("Uploading eval file")
    API.upload_file(
        path_or_fileobj=out_path,
        path_in_repo=out_path,
        repo_id=QUEUE_REPO,
        repo_type="space",
        commit_message=f"Add {model} request file",
    )


    # Remove the local file
    os.remove(out_path)


    yield styled_message(
        "✅ Good news! Your model has been added to the evaluation queue.<br>If you do not see the results after 3 hours then please let us know by opening a community discussion."
    )
    return