rounding
Browse files- app.py +1 -0
- src/leaderboard/read_evals.py +2 -2
app.py
CHANGED
@@ -62,6 +62,7 @@ LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS,
|
|
62 |
def init_leaderboard(dataframe):
|
63 |
#if dataframe is None or dataframe.empty:
|
64 |
#raise ValueError("Leaderboard DataFrame is empty or None.")
|
|
|
65 |
styler = dataframe.style.apply(
|
66 |
lambda rows: [
|
67 |
"background-color: red;color:white" if (value >0) else "background-color: green;color:white" for value in rows
|
|
|
62 |
def init_leaderboard(dataframe):
|
63 |
#if dataframe is None or dataframe.empty:
|
64 |
#raise ValueError("Leaderboard DataFrame is empty or None.")
|
65 |
+
dataframe = dataframe[[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default]]
|
66 |
styler = dataframe.style.apply(
|
67 |
lambda rows: [
|
68 |
"background-color: red;color:white" if (value >0) else "background-color: green;color:white" for value in rows
|
src/leaderboard/read_evals.py
CHANGED
@@ -137,8 +137,8 @@ class EvalResult:
|
|
137 |
for eval_dim in EvalDimensions:
|
138 |
dimension_name = eval_dim.value.col_name
|
139 |
dimension_value = self.results[eval_dim.value.metric]
|
140 |
-
|
141 |
-
|
142 |
data_dict[dimension_name] = dimension_value
|
143 |
|
144 |
return data_dict
|
|
|
137 |
for eval_dim in EvalDimensions:
|
138 |
dimension_name = eval_dim.value.col_name
|
139 |
dimension_value = self.results[eval_dim.value.metric]
|
140 |
+
if dimension_name == "Contamination Score":
|
141 |
+
dimension_value = round(dimension_value,2) if dimension_value>0 else 0
|
142 |
data_dict[dimension_name] = dimension_value
|
143 |
|
144 |
return data_dict
|