import json import os from datetime import datetime, timedelta, timezone import gradio as gr from src.display.formatting import styled_error, styled_message, styled_warning from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO from src.submission.check_validity import ( already_submitted_models, check_model_card, get_model_size, is_model_on_hub, ) from huggingface_hub import hf_hub_download REQUESTED_MODELS = None USERS_TO_SUBMISSION_DATES = None def add_new_eval( model: str, progress=gr.Progress() ): global REQUESTED_MODELS global USERS_TO_SUBMISSION_DATES if not REQUESTED_MODELS: REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH) yield "..." user_name = "" model_path = model if "/" in model: user_name = model.split("/")[0] model_path = model.split("/")[1] current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") progress(0.1, desc=f"Checking model {model} on hub") if not is_model_on_hub(model_name=model, token=TOKEN, test_tokenizer=True): yield styled_error("Model does not exist on HF Hub. Please select a valid model name.") return progress(0.2, desc=f"Checking for banned orgs") ##check for org banning banned_orgs = [{ 'org_name':'TEMPLATE', 'banning_reason':'Submitting contaminated models' }] if user_name in [banned_org['org_name'] for banned_org in banned_orgs]: yield styled_error( f"Your org \"{user_name}\" is banned from submitting models on ABL. If you think this is a mistake then please contact benchmark@silma.ai" ) return # Is the model info correctly filled? try: model_info = API.model_info(repo_id=model) except Exception: yield styled_error("Could not get your model information. Please fill it up properly.") return progress(0.3, desc=f"Checking model size") model_size = get_model_size(model_info=model_info) if model_size>15: yield styled_error("We currently accept community-submitted models up to 15 billion parameters only. If you represent an organization then please contact us at benchmark@silma.ai") return # Were the model card and license filled? try: license = model_info.cardData["license"] except Exception: yield styled_error("Please select a license for your model") return progress(0.5, desc=f"Checking model card") modelcard_OK, error_msg = check_model_card(model) if not modelcard_OK: yield styled_error(error_msg) return ##check if org have submitted in the last 30 days progress(0.6, desc=f"Checking last submission date") previous_user_submissions = USERS_TO_SUBMISSION_DATES.get(user_name) if previous_user_submissions: previous_user_submission_dates = [datetime.strptime(date.replace("T"," ").split(" ")[0], "%Y-%m-%d") for date in previous_user_submissions] previous_user_submission_dates.sort(reverse=True) most_recent_submission = previous_user_submission_dates[0] time_since_last_submission = datetime.now() - most_recent_submission if time_since_last_submission < timedelta(days=30): yield styled_warning( f"Your org \"{user_name}\" have already submitted a model in the last 30 days. Please wait before submitting another model. For exceptions please contact benchmark@silma.ai" ) return progress(0.8, desc=f"Checking same model submissions") # Check for duplicate submission if f"{model}" in REQUESTED_MODELS: yield styled_warning("This model has already been submitted.") return # Seems good, creating the eval print("Preparing a new eval") eval_entry = { "model": model, "model_sha": model_info.sha, "status": "PENDING", "submitted_time": current_time, "likes": model_info.likes, "params": model_size, "license": license, } progress(0.9, desc=f"Creating Eval ...") print("Creating eval file") OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}" os.makedirs(OUT_DIR, exist_ok=True) out_path = f"{OUT_DIR}/{model_path}_eval_request.json" with open(out_path, "w") as f: f.write(json.dumps(eval_entry)) ##update queue file queue_file_path = "./eval_queue.json" ## download queue_file from repo using HuggingFace hub API, update it and upload again queue_file = hf_hub_download( filename=queue_file_path, repo_id=QUEUE_REPO, repo_type="space", token=TOKEN ) with open(queue_file, "r") as f: queue_data = json.load(f) queue_len = len(queue_data) if queue_len == 0: queue_data = [] elif queue_len >= 1: yield styled_warning("The evaluation queue is full at the moment. Please try again in one hour") return queue_data.append(eval_entry) print("Updating eval queue file") API.upload_file( path_or_fileobj=json.dumps(queue_data, indent=2).encode("utf-8"), path_in_repo=queue_file_path, repo_id=QUEUE_REPO, repo_type="space", commit_message=f"Add {model} to eval queue" ) print("Uploading eval file") API.upload_file( path_or_fileobj=out_path, path_in_repo=out_path, repo_id=QUEUE_REPO, repo_type="space", commit_message=f"Add {model} request file", ) # Remove the local file os.remove(out_path) yield styled_message( "✅ Good news! Your model has been added to the evaluation queue.
If you do not see the results after 3 hours then please let us know by opening a community discussion." ) return