Spaces:
Runtime error
Runtime error
| import time | |
| import json | |
| from datetime import date, datetime | |
| from pytz import utc, timezone | |
| import pandas as pd | |
| import gradio as gr | |
| import openai | |
| from src.semantle import get_guess, get_secret | |
| from src.functions import get_functions | |
| from src.utils import add_guess | |
| GPT_MODEL = "gpt-3.5-turbo" | |
| TITLE = "やりとりSemantle" | |
| system_content = task_background+task_description | |
| system_message = [{"role": "system", "content": system_content}] | |
| def create_chat(user_input, chat_history, api_key): | |
| openai.api_key = api_key | |
| chat_messages = [{"role": "user", "content": user_input}] | |
| response = openai.ChatCompletion.create( | |
| model=GPT_MODEL, | |
| messages=system_message+chat_messages, | |
| functions=get_functions() | |
| ) | |
| response_message = response.choices[0].message | |
| # Step 2: check if CPT wanted to call a function | |
| if response_message.get("function_call"): | |
| # Step 3: call the function | |
| # Note: the JSON response may not always be valid; be sure to handle errors | |
| available_functions = { | |
| "evaluate_score": get_guess, | |
| "get_data_for_hint": get_play_data, | |
| } | |
| function_name = response_message["function_call"]["name"] | |
| function_to_call = available_functions[function_name] | |
| function_args = json.loads(response_message["function_call"]["arguments"]) | |
| function_response = function_to_call( | |
| word=function_args.get("word"), | |
| puzzle_num=puzzle_num | |
| ) | |
| guess_result = update_guess(function_response, guessed, guesses) | |
| print(guess_result) | |
| # Step 4: send the info on the function call and function response to GPT | |
| chat_messages.append(response_message.to_dict()) # extend conversation with assistant's reply | |
| chat_messages.append( | |
| {"role": "function", | |
| "name": function_name, | |
| "content": guess_result} | |
| ) # extend conversation with function response | |
| second_response = openai.ChatCompletion.create( | |
| model=GPT_MODEL, | |
| messages=system_message+chat_history+chat_messages, | |
| ) # get a new response from GPT where it can se the function response | |
| chat_messages.append(second_response["choices"][0]["message"].to_dict()) | |
| chat_history = chat_history[-8:] + chat_messages | |
| return chat_messages[-1] | |
| chat_messages.append(response_message.to_dict()) | |
| chat_history = chat_history[-8:] + chat_messages | |
| return chat_messages[-1] | |
| with gr.Blocks() as demo: | |
| FIRST_DAY = date(2023, 4, 2) | |
| puzzle_num = (utc.localize(datetime.utcnow()).astimezone(timezone('Asia/Tokyo')).date() - FIRST_DAY).days | |
| secret = get_secret(puzzle_num) | |
| with gr.Row(): | |
| gr.Markdown( | |
| """ | |
| # やりとりSemantle | |
| [semantle日本語版](https://semantoru.com/)をchatbotと楽しめるためのspaceです。 | |
| ## ゲームのやり方 | |
| - 正解は一つの単語で、これを答えるとゲームの勝利になります。 | |
| - 推測した単語が正解じゃない場合、類似度スコアと順位が表示されます。それは正解を推測する大事なヒントになります。 | |
| ## chatbotの仕事 | |
| - 単語のスコアとランク以外に他のヒントがもらえます。 | |
| - ゲームに関して困っている時、何か質問してみてください。 | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| api_key = gr.Textbox(placeholder="sk-...", label="OPENAI_API_KEY", value=None, type="password") | |
| idx = gr.State(value=0) | |
| guessed = gr.State(value=set()) | |
| guesses = gr.State(value=list()) | |
| cur_guess = gr.State() | |
| guesses_table = gr.DataFrame( | |
| value=pd.DataFrame(columns=["#", "答え", "スコア", "ランク"]), | |
| headers=["#", "答え", "score", "score"], | |
| datatype=["number", "str", "number", "str"], | |
| elem_id="guesses-table", | |
| interactive=False | |
| ) | |
| with gr.Column(elem_id="chat_container"): | |
| msg = gr.Textbox( | |
| placeholder="ゲームをするため、まずはAPI KEYを入れてください。", | |
| label="答え", | |
| interactive=False, | |
| max_lines=1 | |
| ) | |
| chatbot = gr.Chatbot(elem_id="chatbot") | |
| def unfreeze(): | |
| return msg.update(interactive=True, placeholder="正解と思う言葉を答えてください。") | |
| def greet(): | |
| return "", [("[START]", "ゲームを始まります!好きな言葉をひとつだけいってみてください。")] | |
| def respond(key, user_input, chat_history, cur): | |
| reply = create_chat(key, user_input) | |
| if isinstance(reply["content"], list): | |
| cur = reply["content"] | |
| chatbot.append((user_input, reply["content"])) | |
| time.sleep(2) | |
| return "", chatbot, cur | |
| def update_guesses(cur, i, guessed_words, guesses_df): | |
| if cur[0] not in guessed_words: | |
| guessed_words.add(cur[0]) | |
| guesses_df.loc[i] = [i+1] + cur | |
| i += 1 | |
| guesses_df = guesses_df.sort_values(by=["score"], ascending=False) | |
| return i, guessed_words, guesses_df | |
| api_key.change(unfreeze, [], [msg]).then(greet, [], [msg, chatbot]) | |
| msg.submit(respond, [api_key, msg, chatbot, cur_guess], [msg, chatbot, cur_guess]).then( | |
| update_guesses, [cur_guess, idx, guessed, guesses_table], [idx, guessed, guesses_table] | |
| ) | |
| gr.Examples( | |
| [ | |
| ["猫"], | |
| ["どんなヒントが貰える?"], | |
| ["正解と「近い」とはどういう意味?"], | |
| ["何から始めたらいい?"], | |
| ["今日の正解は何?"], | |
| ], | |
| inputs=msg, | |
| label="こちらから選んで話すこともできます." | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(concurrency_count=20).launch() |