File size: 6,613 Bytes
d3bdf42
 
 
36183d4
d3bdf42
535a3a5
 
 
d3bdf42
 
 
36183d4
d3bdf42
 
535a3a5
d3bdf42
36183d4
 
d3bdf42
 
535a3a5
 
 
 
 
 
 
36183d4
d3bdf42
535a3a5
 
d3bdf42
 
 
 
535a3a5
d3bdf42
535a3a5
d3bdf42
 
 
 
 
535a3a5
d3bdf42
 
 
 
 
 
 
535a3a5
d3bdf42
535a3a5
d3bdf42
 
 
535a3a5
d3bdf42
 
 
 
535a3a5
d3bdf42
 
 
 
 
 
 
 
 
 
 
 
36183d4
 
 
d3bdf42
 
535a3a5
 
d3bdf42
 
 
 
 
 
535a3a5
 
 
d3bdf42
 
 
 
 
 
 
535a3a5
 
d3bdf42
 
535a3a5
 
 
 
d3bdf42
 
 
 
 
 
 
 
 
 
535a3a5
d3bdf42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
535a3a5
d3bdf42
 
 
535a3a5
 
 
 
 
 
 
36183d4
 
 
 
535a3a5
d3bdf42
 
 
 
 
 
 
 
 
535a3a5
d3bdf42
 
 
535a3a5
 
d3bdf42
 
535a3a5
d3bdf42
 
535a3a5
d3bdf42
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import logging
import time
import traceback
import asyncio
from sklearn.feature_extraction.text import TfidfVectorizer
from typing import Optional, List, Dict, Any, Tuple, Union
import pandas as pd
from pathlib import Path

from classifiers import TFIDFClassifier, LLMClassifier
from utils import load_data, validate_results
from client import get_client


def update_api_key(api_key: str) -> Tuple[bool, str]:
    """Update the OpenAI API key"""
    from client import initialize_client
    return initialize_client(api_key)


async def process_file_async(
    file: Union[str, Path],
    text_columns: List[str],
    categories: Optional[str],
    classifier_type: str,
    show_explanations: bool
) -> Tuple[Optional[pd.DataFrame], Optional[str]]:
    """Async version of process_file"""
    # Initialize result_df and validation_report
    result_df: Optional[pd.DataFrame] = None
    validation_report: Optional[str] = None

    try:
        # Load data from file
        if isinstance(file, str):
            df: pd.DataFrame = load_data(file)
        else:
            df: pd.DataFrame = load_data(file.name)

        if not text_columns:
            return None, "Please select at least one text column"

        # Check if all selected columns exist
        missing_columns: List[str] = [col for col in text_columns if col not in df.columns]
        if missing_columns:
            return (
                None,
                f"Columns not found in the file: {', '.join(missing_columns)}. Available columns: {', '.join(df.columns)}",
            )

        # Combine text from selected columns
        texts: List[str] = []
        for _, row in df.iterrows():
            combined_text: str = " ".join(str(row[col]) for col in text_columns)
            texts.append(combined_text)

        # Parse categories if provided
        category_list: List[str] = []
        if categories:
            category_list = [cat.strip() for cat in categories.split(",")]

        # Select classifier based on data size and user choice
        num_texts: int = len(texts)

        # If no specific model is chosen, select the most appropriate one
        if classifier_type == "auto":
            if num_texts <= 500:
                classifier_type = "gpt4"
            elif num_texts <= 1000:
                classifier_type = "gpt35"
            elif num_texts <= 5000:
                classifier_type = "hybrid"
            else:
                classifier_type = "tfidf"

        # Get the client instance
        client = get_client()

        # Initialize appropriate classifier
        if classifier_type == "tfidf":
            classifier: TFIDFClassifier = TFIDFClassifier()
            results: List[Dict[str, Any]] = classifier.classify(texts, category_list)
        elif classifier_type in ["gpt35", "gpt4"]:
            if client is None:
                return (
                    None,
                    "Erreur : Le client API n'est pas initialisé. Veuillez configurer une clé API valide dans l'onglet 'Setup'.",
                )
            model: str = "gpt-3.5-turbo" if classifier_type == "gpt35" else "gpt-4"
            classifier: LLMClassifier = LLMClassifier(client=client, model=model)
            results: List[Dict[str, Any]] = await classifier.classify_async(texts, category_list)
        else:  # hybrid
            if client is None:
                return (
                    None,
                    "Erreur : Le client API n'est pas initialisé. Veuillez configurer une clé API valide dans l'onglet 'Setup'.",
                )
            # First pass with TF-IDF
            tfidf_classifier: TFIDFClassifier = TFIDFClassifier()
            tfidf_results: List[Dict[str, Any]] = tfidf_classifier.classify(texts, category_list)

            # Second pass with LLM for low confidence results
            llm_classifier: LLMClassifier = LLMClassifier(client=client, model="gpt-3.5-turbo")
            results: List[Optional[Dict[str, Any]]] = []
            low_confidence_texts: List[str] = []
            low_confidence_indices: List[int] = []

            for i, (text, tfidf_result) in enumerate(zip(texts, tfidf_results)):
                if tfidf_result["confidence"] < 70:  # If confidence is below 70%
                    low_confidence_texts.append(text)
                    low_confidence_indices.append(i)
                    results.append(None)  # Placeholder
                else:
                    results.append(tfidf_result)

            if low_confidence_texts:
                llm_results: List[Dict[str, Any]] = await llm_classifier.classify_async(
                    low_confidence_texts, category_list
                )
                for idx, llm_result in zip(low_confidence_indices, llm_results):
                    results[idx] = llm_result

        # Create results dataframe
        result_df = df.copy()
        result_df["Category"] = [r["category"] for r in results]
        result_df["Confidence"] = [r["confidence"] for r in results]

        if show_explanations:
            result_df["Explanation"] = [r["explanation"] for r in results]

        # Validate results using LLM
        validation_report = validate_results(result_df, text_columns, client)

        return result_df, validation_report

    except Exception as e:
        error_traceback: str = traceback.format_exc()
        return None, f"Error: {str(e)}\n{error_traceback}"


def process_file(
    file: Union[str, Path],
    text_columns: List[str],
    categories: Optional[str],
    classifier_type: str,
    show_explanations: bool
) -> Tuple[Optional[pd.DataFrame], Optional[str]]:
    """Synchronous wrapper for process_file_async"""
    return asyncio.run(process_file_async(file, text_columns, categories, classifier_type, show_explanations))


def export_results(df: pd.DataFrame, format_type: str) -> Optional[str]:
    """Export results to a file and return the file path for download"""
    if df is None:
        return None

    # Create a temporary file
    import tempfile
    import os

    # Create a temporary directory if it doesn't exist
    temp_dir: str = "temp_exports"
    os.makedirs(temp_dir, exist_ok=True)

    # Generate a unique filename
    timestamp: str = time.strftime("%Y%m%d-%H%M%S")
    filename: str = f"classification_results_{timestamp}"

    if format_type == "excel":
        file_path: str = os.path.join(temp_dir, f"{filename}.xlsx")
        df.to_excel(file_path, index=False)
    else:
        file_path: str = os.path.join(temp_dir, f"{filename}.csv")
        df.to_csv(file_path, index=False)

    return file_path