Spaces:
Sleeping
Sleeping
File size: 6,613 Bytes
d3bdf42 36183d4 d3bdf42 535a3a5 d3bdf42 36183d4 d3bdf42 535a3a5 d3bdf42 36183d4 d3bdf42 535a3a5 36183d4 d3bdf42 535a3a5 d3bdf42 535a3a5 d3bdf42 535a3a5 d3bdf42 535a3a5 d3bdf42 535a3a5 d3bdf42 535a3a5 d3bdf42 535a3a5 d3bdf42 535a3a5 d3bdf42 36183d4 d3bdf42 535a3a5 d3bdf42 535a3a5 d3bdf42 535a3a5 d3bdf42 535a3a5 d3bdf42 535a3a5 d3bdf42 535a3a5 d3bdf42 535a3a5 36183d4 535a3a5 d3bdf42 535a3a5 d3bdf42 535a3a5 d3bdf42 535a3a5 d3bdf42 535a3a5 d3bdf42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import logging
import time
import traceback
import asyncio
from sklearn.feature_extraction.text import TfidfVectorizer
from typing import Optional, List, Dict, Any, Tuple, Union
import pandas as pd
from pathlib import Path
from classifiers import TFIDFClassifier, LLMClassifier
from utils import load_data, validate_results
from client import get_client
def update_api_key(api_key: str) -> Tuple[bool, str]:
"""Update the OpenAI API key"""
from client import initialize_client
return initialize_client(api_key)
async def process_file_async(
file: Union[str, Path],
text_columns: List[str],
categories: Optional[str],
classifier_type: str,
show_explanations: bool
) -> Tuple[Optional[pd.DataFrame], Optional[str]]:
"""Async version of process_file"""
# Initialize result_df and validation_report
result_df: Optional[pd.DataFrame] = None
validation_report: Optional[str] = None
try:
# Load data from file
if isinstance(file, str):
df: pd.DataFrame = load_data(file)
else:
df: pd.DataFrame = load_data(file.name)
if not text_columns:
return None, "Please select at least one text column"
# Check if all selected columns exist
missing_columns: List[str] = [col for col in text_columns if col not in df.columns]
if missing_columns:
return (
None,
f"Columns not found in the file: {', '.join(missing_columns)}. Available columns: {', '.join(df.columns)}",
)
# Combine text from selected columns
texts: List[str] = []
for _, row in df.iterrows():
combined_text: str = " ".join(str(row[col]) for col in text_columns)
texts.append(combined_text)
# Parse categories if provided
category_list: List[str] = []
if categories:
category_list = [cat.strip() for cat in categories.split(",")]
# Select classifier based on data size and user choice
num_texts: int = len(texts)
# If no specific model is chosen, select the most appropriate one
if classifier_type == "auto":
if num_texts <= 500:
classifier_type = "gpt4"
elif num_texts <= 1000:
classifier_type = "gpt35"
elif num_texts <= 5000:
classifier_type = "hybrid"
else:
classifier_type = "tfidf"
# Get the client instance
client = get_client()
# Initialize appropriate classifier
if classifier_type == "tfidf":
classifier: TFIDFClassifier = TFIDFClassifier()
results: List[Dict[str, Any]] = classifier.classify(texts, category_list)
elif classifier_type in ["gpt35", "gpt4"]:
if client is None:
return (
None,
"Erreur : Le client API n'est pas initialisé. Veuillez configurer une clé API valide dans l'onglet 'Setup'.",
)
model: str = "gpt-3.5-turbo" if classifier_type == "gpt35" else "gpt-4"
classifier: LLMClassifier = LLMClassifier(client=client, model=model)
results: List[Dict[str, Any]] = await classifier.classify_async(texts, category_list)
else: # hybrid
if client is None:
return (
None,
"Erreur : Le client API n'est pas initialisé. Veuillez configurer une clé API valide dans l'onglet 'Setup'.",
)
# First pass with TF-IDF
tfidf_classifier: TFIDFClassifier = TFIDFClassifier()
tfidf_results: List[Dict[str, Any]] = tfidf_classifier.classify(texts, category_list)
# Second pass with LLM for low confidence results
llm_classifier: LLMClassifier = LLMClassifier(client=client, model="gpt-3.5-turbo")
results: List[Optional[Dict[str, Any]]] = []
low_confidence_texts: List[str] = []
low_confidence_indices: List[int] = []
for i, (text, tfidf_result) in enumerate(zip(texts, tfidf_results)):
if tfidf_result["confidence"] < 70: # If confidence is below 70%
low_confidence_texts.append(text)
low_confidence_indices.append(i)
results.append(None) # Placeholder
else:
results.append(tfidf_result)
if low_confidence_texts:
llm_results: List[Dict[str, Any]] = await llm_classifier.classify_async(
low_confidence_texts, category_list
)
for idx, llm_result in zip(low_confidence_indices, llm_results):
results[idx] = llm_result
# Create results dataframe
result_df = df.copy()
result_df["Category"] = [r["category"] for r in results]
result_df["Confidence"] = [r["confidence"] for r in results]
if show_explanations:
result_df["Explanation"] = [r["explanation"] for r in results]
# Validate results using LLM
validation_report = validate_results(result_df, text_columns, client)
return result_df, validation_report
except Exception as e:
error_traceback: str = traceback.format_exc()
return None, f"Error: {str(e)}\n{error_traceback}"
def process_file(
file: Union[str, Path],
text_columns: List[str],
categories: Optional[str],
classifier_type: str,
show_explanations: bool
) -> Tuple[Optional[pd.DataFrame], Optional[str]]:
"""Synchronous wrapper for process_file_async"""
return asyncio.run(process_file_async(file, text_columns, categories, classifier_type, show_explanations))
def export_results(df: pd.DataFrame, format_type: str) -> Optional[str]:
"""Export results to a file and return the file path for download"""
if df is None:
return None
# Create a temporary file
import tempfile
import os
# Create a temporary directory if it doesn't exist
temp_dir: str = "temp_exports"
os.makedirs(temp_dir, exist_ok=True)
# Generate a unique filename
timestamp: str = time.strftime("%Y%m%d-%H%M%S")
filename: str = f"classification_results_{timestamp}"
if format_type == "excel":
file_path: str = os.path.join(temp_dir, f"{filename}.xlsx")
df.to_excel(file_path, index=False)
else:
file_path: str = os.path.join(temp_dir, f"{filename}.csv")
df.to_csv(file_path, index=False)
return file_path
|