Spaces:
Sleeping
Sleeping
| import os | |
| import pandas as pd | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| from sklearn.decomposition import PCA | |
| from sklearn.feature_extraction.text import TfidfVectorizer | |
| import tempfile | |
| def load_data(file_path): | |
| """ | |
| Load data from an Excel or CSV file | |
| Args: | |
| file_path (str): Path to the file | |
| Returns: | |
| pd.DataFrame: Loaded data | |
| """ | |
| file_ext = os.path.splitext(file_path)[1].lower() | |
| if file_ext == ".xlsx" or file_ext == ".xls": | |
| return pd.read_excel(file_path) | |
| elif file_ext == ".csv": | |
| return pd.read_csv(file_path) | |
| else: | |
| raise ValueError( | |
| f"Unsupported file format: {file_ext}. Please upload an Excel or CSV file." | |
| ) | |
| def export_data(df, file_name, format_type="excel"): | |
| """ | |
| Export dataframe to file | |
| Args: | |
| df (pd.DataFrame): Dataframe to export | |
| file_name (str): Name of the output file | |
| format_type (str): "excel" or "csv" | |
| Returns: | |
| str: Path to the exported file | |
| """ | |
| # Create export directory if it doesn't exist | |
| export_dir = "exports" | |
| os.makedirs(export_dir, exist_ok=True) | |
| # Full path for the export file | |
| export_path = os.path.join(export_dir, file_name) | |
| # Export based on format type | |
| if format_type == "excel": | |
| df.to_excel(export_path, index=False) | |
| else: | |
| df.to_csv(export_path, index=False) | |
| return export_path | |
| def visualize_results(df, text_column, category_column="Category"): | |
| """ | |
| Create visualization of classification results | |
| Args: | |
| df (pd.DataFrame): Dataframe with classification results | |
| text_column (str): Name of the column containing text data | |
| category_column (str): Name of the column containing categories | |
| Returns: | |
| matplotlib.figure.Figure: Visualization figure | |
| """ | |
| # Check if category column exists | |
| if category_column not in df.columns: | |
| # Create a simple figure with a message | |
| fig, ax = plt.subplots(figsize=(10, 6)) | |
| ax.text( | |
| 0.5, 0.5, "No categories to display", ha="center", va="center", fontsize=12 | |
| ) | |
| ax.set_title("No Classification Results Available") | |
| plt.tight_layout() | |
| return fig | |
| # Get categories and their counts | |
| category_counts = df[category_column].value_counts() | |
| # Create a new figure | |
| fig, ax = plt.subplots(figsize=(10, 6)) | |
| # Create the histogram | |
| bars = ax.bar(category_counts.index, category_counts.values) | |
| # Add value labels on top of each bar | |
| for bar in bars: | |
| height = bar.get_height() | |
| ax.text( | |
| bar.get_x() + bar.get_width() / 2.0, | |
| height, | |
| f"{int(height)}", | |
| ha="center", | |
| va="bottom", | |
| ) | |
| # Customize the plot | |
| ax.set_xlabel("Categories") | |
| ax.set_ylabel("Number of Texts") | |
| ax.set_title("Distribution of Classified Texts") | |
| # Rotate x-axis labels if they're too long | |
| plt.xticks(rotation=45, ha="right") | |
| # Add grid | |
| ax.grid(True, linestyle="--", alpha=0.7) | |
| plt.tight_layout() | |
| return fig | |
| def validate_results(df, text_columns, client): | |
| """ | |
| Use LLM to validate the classification results | |
| Args: | |
| df (pd.DataFrame): Dataframe with classification results | |
| text_columns (list): List of column names containing text data | |
| client: LiteLLM client | |
| Returns: | |
| str: Validation report | |
| """ | |
| try: | |
| # Sample a few rows for validation | |
| sample_size = min(5, len(df)) | |
| sample_df = df.sample(n=sample_size, random_state=42) | |
| # Build validation prompt | |
| validation_prompts = [] | |
| for _, row in sample_df.iterrows(): | |
| # Combine text from all selected columns | |
| text = " ".join(str(row[col]) for col in text_columns) | |
| assigned_category = row["Category"] | |
| confidence = row["Confidence"] | |
| validation_prompts.append( | |
| f"Text: {text}\nAssigned Category: {assigned_category}\nConfidence: {confidence}\n" | |
| ) | |
| prompt = """ | |
| As a validation expert, review the following text classifications and provide feedback. | |
| For each text, assess whether the assigned category seems appropriate: | |
| {} | |
| Provide a brief validation report with: | |
| 1. Overall accuracy assessment (0-100%) | |
| 2. Any potential misclassifications identified | |
| 3. Suggestions for improvement | |
| Keep your response under 300 words. | |
| """.format( | |
| "\n---\n".join(validation_prompts) | |
| ) | |
| # Call LLM API | |
| response = client.chat.completions.create( | |
| model="gpt-3.5-turbo", | |
| messages=[{"role": "user", "content": prompt}], | |
| temperature=0.3, | |
| max_tokens=400, | |
| ) | |
| validation_report = response.choices[0].message.content.strip() | |
| return validation_report | |
| except Exception as e: | |
| return f"Validation failed: {str(e)}" | |
| def create_example_file(): | |
| """ | |
| Create an example CSV file for testing | |
| Returns: | |
| str: Path to the created file | |
| """ | |
| # Create some example data | |
| data = { | |
| "text": [ | |
| "I absolutely love this product! It exceeded all my expectations.", | |
| "The service was terrible and the staff was rude.", | |
| "The product arrived on time but was slightly damaged.", | |
| "I have mixed feelings about this. Some features are great, others not so much.", | |
| "This is a complete waste of money. Do not buy!", | |
| "The customer service team was very helpful in resolving my issue.", | |
| "It's okay, nothing special but gets the job done.", | |
| "I'm extremely disappointed with the quality of this product.", | |
| "This is the best purchase I've made all year!", | |
| "It's reasonably priced and works as expected.", | |
| ] | |
| } | |
| # Create dataframe | |
| df = pd.DataFrame(data) | |
| # Save to a CSV file | |
| example_dir = "examples" | |
| os.makedirs(example_dir, exist_ok=True) | |
| file_path = os.path.join(example_dir, "sample_reviews.csv") | |
| df.to_csv(file_path, index=False) | |
| return file_path | |