File size: 6,522 Bytes
8adb95d
10b1be2
 
 
8adb95d
 
 
 
10b1be2
8adb95d
59e713c
10b1be2
 
4fab10d
10b1be2
 
551d6ff
10b1be2
 
 
ba0c8e7
fb25f9c
c5e4478
b7d6da0
59e713c
fb25f9c
 
c5e4478
10b1be2
abe6512
39579b4
 
abe6512
853bf92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39579b4
853bf92
8adb95d
 
 
 
59e713c
 
660f406
59e713c
660f406
8adb95d
 
10b1be2
083f3dd
1365361
59e713c
8adb95d
 
 
 
fef897d
c5e4478
 
 
8adb95d
10b1be2
c5e4478
 
59e713c
8adb95d
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

import os
import json

import gradio as gr
from gradio_moleculeview import moleculeview


import cellscape

def predict(input_mol, style, contour_level, view_str, chains):
    # write view to file
    with open("view_matrix", "w") as f:
        f.write(json.loads(view_str))

    chain_str = ""
    chain_dict = json.loads(chains)

    # sort keys in dict and add colors to chain_str
    for chain in sorted(chain_dict.keys()):
        chain_str += f" '{chain_dict[chain]}'"
    if style == "Goodsell3D":
        os.system(f"cellscape cartoon --pdb {input_mol.name} --outline residue --color_by chain --depth_shading --depth_lines --colors {chain_str}  --depth flat --back_outline --view view_matrix --save outline_all.svg")
    elif style == "Contour":
        os.system(f"cellscape cartoon --pdb {input_mol.name} --outline chain --color_by chain  --depth_contour_interval {contour_level} --colors {chain_str}  --depth contours --back_outline --view view_matrix --save outline_all.svg")
    else:
        os.system(f"cellscape cartoon --pdb {input_mol.name} --outline chain --colors {chain_str}  --depth flat --back_outline --view view_matrix --save outline_all.svg")
    
    #read content of file
    print(os.stat("outline_all.svg").st_size / (1024 * 1024))
    os.system("inkscape outline_all.svg --actions='select-all;path-simplify;export-plain-svg' --export-filename pdb_opt.svg")
    print(os.stat("outline_all.svg").st_size / (1024 * 1024))

    html_output = """
    
     <button id="copySvgBtn">Copy SVG to Clipboard</button>
    <button id="copyPngBtn">Copy PNG to Clipboard</button>

    <!-- Buttons for Download -->
    <button id="downloadSvgBtn">Download SVG</button>
    <button id="downloadPngBtn">Download PNG</button>
    <script>
    function copySvgToClipboard() {
    const svgElement = document.getElementById('svgElement');
    const svgData = new XMLSerializer().serializeToString(svgElement);
    const blob = new Blob([svgData], { type: 'image/svg+xml' });
    const clipboardItem = [new ClipboardItem({ 'image/svg+xml': blob })];

    navigator.clipboard.write(clipboardItem).then(() => {
        alert("SVG copied to clipboard!");
    }).catch(err => {
        console.error("Could not copy SVG to clipboard: ", err);
    });
}

// Function to convert SVG to PNG and copy to clipboard
function copyPngToClipboard() {
    const svgElement = document.getElementById('svgElement');
    const svgData = new XMLSerializer().serializeToString(svgElement);
    const canvas = document.createElement('canvas');
    const ctx = canvas.getContext('2d');
    const img = new Image();

    img.onload = function () {
        canvas.width = svgElement.clientWidth;
        canvas.height = svgElement.clientHeight;
        ctx.drawImage(img, 0, 0);
        canvas.toBlob(blob => {
            const clipboardItem = [new ClipboardItem({ 'image/png': blob })];
            navigator.clipboard.write(clipboardItem).then(() => {
                alert("PNG copied to clipboard!");
            }).catch(err => {
                console.error("Could not copy PNG to clipboard: ", err);
            });
        }, 'image/png');
    };

    img.src = 'data:image/svg+xml;base64,' + btoa(svgData);
}

// Function to download SVG
function downloadSvg() {
    const svgElement = document.getElementById('svgElement');
    const svgData = new XMLSerializer().serializeToString(svgElement);
    const blob = new Blob([svgData], { type: 'image/svg+xml' });
    const url = URL.createObjectURL(blob);

    const a = document.createElement('a');
    a.href = url;
    a.download = 'image.svg';
    document.body.appendChild(a);
    a.click();
    document.body.removeChild(a);
    URL.revokeObjectURL(url);
}

// Function to download PNG
function downloadPng() {
    const svgElement = document.getElementById('svgElement');
    const svgData = new XMLSerializer().serializeToString(svgElement);
    const canvas = document.createElement('canvas');
    const ctx = canvas.getContext('2d');
    const img = new Image();

    img.onload = function () {
        canvas.width = svgElement.clientWidth;
        canvas.height = svgElement.clientHeight;
        ctx.drawImage(img, 0, 0);
        canvas.toBlob(blob => {
            const url = URL.createObjectURL(blob);
            const a = document.createElement('a');
            a.href = url;
            a.download = 'image.png';
            document.body.appendChild(a);
            a.click();
            document.body.removeChild(a);
            URL.revokeObjectURL(url);
        }, 'image/png');
    };

    img.src = 'data:image/svg+xml;base64,' + btoa(svgData);
}

// Button event listeners
document.getElementById('copySvgBtn').addEventListener('click', copySvgToClipboard);
document.getElementById('copyPngBtn').addEventListener('click', copyPngToClipboard);
document.getElementById('downloadSvgBtn').addEventListener('click', downloadSvg);
document.getElementById('downloadPngBtn').addEventListener('click', downloadPng);
    </script>
    """
    
    with open("pdb_opt.svg", "r") as f:
        return f.read().replace("<svg", "<svg id='svgElement'")+html_output, "pdb_opt.svg"




def show_contour_level(style):
    if style=="Contour":
        return gr.Slider(minimum=1,maximum=50,step=1, value=10, label="Contour level", visible=True)
    else:
        return gr.Slider(minimum=1,maximum=50,step=1, value=10, label="Contour level", visible=False)

with gr.Blocks() as demo:
    gr.Markdown("# PDB2Vector")
    style = gr.Radio(value="Flat", choices=["Flat", "Contour", "Goodsell3D"], label="Style")
    contour_level = gr.Slider(minimum=1,maximum=50,step=1, value=10, label="Contour level", visible=False)
    style.change(show_contour_level, style, contour_level)
    inp = moleculeview(label="Molecule3D")

    view_str = gr.Textbox("viewMatrixResult", label="View Matrix", visible=False)
    chains = gr.Textbox("chainsResult", label="Chains", visible=False) 
    hidden_style = gr.Textbox(visible=False)
    timestamp = gr.Textbox(visible=False)
    
    btn = gr.Button("Vectorize")
    html = gr.HTML("")
    out_file = gr.File(label="Download SVG")
    btn.click(None, style, [view_str, chains, hidden_style, timestamp], js="(style) => [document.getElementById('viewMatrixResult').value, document.getElementById('chains').value, style, Date.now()]")  #
    
    timestamp.change(predict, [inp, style, contour_level, view_str, chains], [html, out_file])
    # on change of chains trigger, rendering
    

if __name__ == "__main__":
    demo.launch()