Spaces:
Runtime error
Runtime error
File size: 9,596 Bytes
7262628 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
import pinecone
# init connection to pinecone
pinecone.init(
api_key="0898750a-ee05-44f1-ac8a-98c5fef92f4a", # app.pinecone.io
environment="asia-southeast1-gcp-free" # find next to api key
)
# index_name = "hybrid-image-search"
# if index_name not in pinecone.list_indexes():
# # create the index
# pinecone.create_index(
# index_name,
# dimension=512,
# metric="dotproduct",
# pod_type="s1"
# )
index_name = pinecone.list_indexes()[0]
print(index_name)
index = pinecone.GRPCIndex(index_name)
from datasets import load_dataset
# load the dataset from huggingface datasets hub
fashion = load_dataset(
"ashraq/fashion-product-images-small",
split='train[:1000]'
)
images = fashion["image"]
metadata = fashion.remove_columns("image")
images[900]
import pandas as pd
metadata = metadata.to_pandas()
filtered = metadata[ (metadata['gender'] == 'Men') & (metadata['articleType'] == 'Jeans')& (metadata['baseColour'] == 'Blue')]
print(len(filtered))
metadata.head()
import requests
with open('pinecone_text.py' ,'w') as fb:
fb.write(requests.get('https://storage.googleapis.com/gareth-pinecone-datasets/pinecone_text.py').text)
from transformers import BertTokenizerFast
import pinecone_text
# load bert tokenizer from huggingface
tokenizer = BertTokenizerFast.from_pretrained(
'bert-base-uncased'
)
def tokenize_func(text):
token_ids = tokenizer(
text,
add_special_tokens=False
)['input_ids']
return tokenizer.convert_ids_to_tokens(token_ids)
bm25 = pinecone_text.BM25(tokenize_func)
tokenize_func('Turtle Check Men Navy Blue Shirt')
bm25.fit(metadata['productDisplayName'])
display(metadata['productDisplayName'][0])
bm25.transform_query(metadata['productDisplayName'][0])
from sentence_transformers import SentenceTransformer
import transformers.models.clip.image_processing_clip
import torch
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# load a CLIP model from huggingface
model = SentenceTransformer(
'sentence-transformers/clip-ViT-B-32',
device=device
)
model
dense_vec = model.encode([metadata['productDisplayName'][0]])
dense_vec.shape
#len(fashion)
"""##Encode the dataset to index
"""
# from tqdm.auto import tqdm
# batch_size = 200
# for i in tqdm(range(0, len(fashion), batch_size)):
# # find end of batch
# i_end = min(i+batch_size, len(fashion))
# # extract metadata batch
# meta_batch = metadata.iloc[i:i_end]
# meta_dict = meta_batch.to_dict(orient="records")
# # concatinate all metadata field except for id and year to form a single string
# meta_batch = [" ".join(x) for x in meta_batch.loc[:, ~meta_batch.columns.isin(['id', 'year'])].values.tolist()]
# # extract image batch
# img_batch = images[i:i_end]
# # create sparse BM25 vectors
# sparse_embeds = [bm25.transform_doc(text) for text in meta_batch]
# # create dense vectors
# dense_embeds = model.encode(img_batch).tolist()
# # create unique IDs
# ids = [str(x) for x in range(i, i_end)]
# upserts = []
# # loop through the data and create dictionaries for uploading documents to pinecone index
# for _id, sparse, dense, meta in zip(ids, sparse_embeds, dense_embeds, meta_dict):
# upserts.append({
# 'id': _id,
# 'sparse_values': sparse,
# 'values': dense,
# 'metadata': meta
# })
# # upload the documents to the new hybrid index
# index.upsert(upserts)
# show index description after uploading the documents
index.describe_index_stats()
from IPython.core.display import HTML
from io import BytesIO
from base64 import b64encode
import pinecone_text
# function to display product images
def display_result(image_batch):
figures = []
for img in image_batch:
b = BytesIO()
img.save(b, format='png')
figures.append(f'''
<figure style="margin: 5px !important;">
<img src="data:image/png;base64,{b64encode(b.getvalue()).decode('utf-8')}" style="width: 90px; height: 120px" >
</figure>
''')
return HTML(data=f'''
<div style="display: flex; flex-flow: row wrap; text-align: center;">
{''.join(figures)}
</div>
''')
def hybrid_scale(dense, sparse, alpha: float):
"""Hybrid vector scaling using a convex combination
alpha * dense + (1 - alpha) * sparse
Args:
dense: Array of floats representing
sparse: a dict of `indices` and `values`
alpha: float between 0 and 1 where 0 == sparse only
and 1 == dense only
"""
if alpha < 0 or alpha > 1:
raise ValueError("Alpha must be between 0 and 1")
# scale sparse and dense vectors to create hybrid search vecs
hsparse = {
'indices': sparse['indices'],
'values': [v * (1 - alpha) for v in sparse['values']]
}
hdense = [v * alpha for v in dense]
return hdense, hsparse
def text_to_image(query, alpha, k_results):
sparse = bm25.transform_query(query)
dense = model.encode(query).tolist()
# scale sparse and dense vectors
hdense, hsparse = hybrid_scale(dense, sparse, alpha=alpha)
# search
result = index.query(
top_k=k_results,
vector=hdense,
sparse_vector=hsparse,
include_metadata=True
)
# used returned product ids to get images
imgs = [images[int(r["id"])] for r in result["matches"]]
description = []
for x in result["matches"]:
description.append( x["metadata"]['productDisplayName'] )
return imgs, description
def show_dir_content():
for dirname, _, filenames in os.walk('./'):
for filename in filenames:
print(os.path.join(dirname, filename))
import shutil
from PIL import Image
import os
counter = {"dir_num": 1}
img_files = {'x':[]}
def img_to_file_list(imgs):
os.chdir('/content')
path = "searches"
sub_path = 'content/' + path + '/' + 'search' + '_' + str(counter["dir_num"])
# Check whether the specified path exists or not
isExist = os.path.exists('content'+'/'+path)
if not isExist:
print("Directory does not exists")
# Create a new directory because it does not exist
os.makedirs('content'+'/'+path, exist_ok = True)
print("The new directory is created!")
#else:
# os.chdir('/content/'+path)
print("Subdir ->The Current working directory is: {0}".format(os.getcwd()))
# Check whether the specified path exists or not
isExist = os.path.exists(sub_path)
if isExist:
shutil.rmtree(sub_path)
os.makedirs(sub_path, exist_ok = True)
img_files = {'search'+str(counter["dir_num"]):[]}
i = 0
curr_dir = os.getcwd()
for img in imgs:
img.save(sub_path+"/img_" + str(i) + ".png","PNG")
img_files['search'+str(counter["dir_num"])].append(sub_path + '/' + 'img_'+ str(i) + ".png")
i+=1
counter["dir_num"]+=1
return img_files['search'+str(counter["dir_num"]-1)]
#print(os.getcwd())
# os.chdir('/content/searches')
# print("The Current working directory is: {0}".format(os.getcwd()))
# show_dir_content()
# imgs2, descr = text_to_image('blue jeans for women', 0.5, 4)
# print("The Current working directory is: {0}".format(os.getcwd()))
# show_dir_content()
# img_files = img_to_file_list(imgs2)
# display(img_files)
# print("The Current working directory is: {0}".format(os.getcwd()))
# show_dir_content()
# shutil.rmtree('/content/searches')
# #shutil.rmtree('./content/searches')
# #print("The Current working directory is: {0}".format(os.getcwd()))
# #show_dir_content()
# #counter, img_files = img_to_file_list(imgs1, counter, img_files)
# #display(img_files)
# #counter, img_files = img_to_file_list(imgs2)
import gradio as gr
from deep_translator import GoogleTranslator
css = '''
.gallery img {
width: 45px;
height: 60px;
object-fit: contain;
}
'''
counter = {"dir_num": 1}
img_files = {'x':[]}
def fake_gan(text, alpha):
text_eng=GoogleTranslator(source='iw', target='en').translate(text)
imgs, descr = text_to_image(text_eng, alpha, 3)
img_files = img_to_file_list(imgs)
return img_files
def fake_text(text, alpha):
en_text = GoogleTranslator(source='iw', target='en').translate(text)
img , descr = text_to_image(en_text, alpha, 3)
return descr
with gr.Blocks() as demo:
with gr.Row():#variant="compact"):
text = gr.Textbox(
value = "ื'ืื ืก ืืืื ืืืืจืื",
label="Enter the product characteristics:",
#show_label=True,
#max_lines=1,
#placeholder="Enter your prompt",
)
alpha = gr.Slider(0, 1, step=0.01, label='Choose alpha:', value = 0.05)
with gr.Row():
btn = gr.Button("Generate image")
with gr.Row():
gallery = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
).style(columns=[8], rows=[2], object_fit='scale-down', height='auto')
with gr.Row():
selected = gr.Textbox(label="Product description: ", interactive=False, value = "-----> Description <-------",placeholder="Selected")
btn.click(fake_gan, inputs=[text, alpha], outputs=gallery)
def get_select_index(evt: gr.SelectData,text,alpha):
print(evt.index)
eng_text = fake_text(text, alpha)[evt.index]
heb_text = GoogleTranslator(source='en', target='iw').translate(eng_text)
return heb_text
#gallery.select( get_select_index, None, selected )
gallery.select( fn=get_select_index, inputs=[text,alpha], outputs=selected )
demo.launch()
#shutil.rmtree('/content/searches')
|