Spaces:
Build error
Build error
# PREP DEPENDENCIES | |
from scipy.spatial import distance as dist | |
from imutils import face_utils | |
from threading import Thread | |
import numpy as np | |
import cv2 as cv | |
import imutils | |
import dlib | |
import pygame # Used for playing alarm sounds cross-platform | |
import argparse | |
import os | |
# --- INITIALIZE MODELS AND CONSTANTS --- | |
# Haar cascade classifier for face detection | |
haar_cascade_face_detector = "dependencies/haarcascade_frontalface_default.xml" | |
face_detector = cv.CascadeClassifier(haar_cascade_face_detector) | |
# Dlib facial landmark detector | |
dlib_facial_landmark_predictor = "dependencies/shape_predictor_68_face_landmarks.dat" | |
landmark_predictor = dlib.shape_predictor(dlib_facial_landmark_predictor) | |
# Important Variables | |
font = cv.FONT_HERSHEY_SIMPLEX | |
# --- INITIALIZE MODELS AND CONSTANTS --- | |
# Eye Drowsiness Detection | |
EYE_ASPECT_RATIO_THRESHOLD = 0.25 | |
EYE_CLOSED_THRESHOLD = 20 | |
EYE_THRESH_COUNTER = 0 | |
DROWSY_COUNTER = 0 | |
drowsy_alert = False | |
# Mouth Yawn Detection | |
MOUTH_ASPECT_RATIO_THRESHOLD = 0.5 | |
MOUTH_OPEN_THRESHOLD = 15 | |
YAWN_THRESH_COUNTER = 0 | |
YAWN_COUNTER = 0 | |
yawn_alert = False | |
# NEW: Head Not Visible Detection | |
FACE_LOST_THRESHOLD = 25 # Conseq. frames face must be lost to trigger alert | |
FACE_LOST_COUNTER = 0 | |
HEAD_DOWN_COUNTER = 0 # Renaming for clarity | |
head_down_alert = False | |
# --- AUDIO SETUP (using Pygame) --- | |
pygame.mixer.init() | |
drowsiness_sound = pygame.mixer.Sound("dependencies/audio/drowsiness-detected.mp3") | |
yawn_sound = pygame.mixer.Sound("dependencies/audio/yawning-detected.mp3") | |
# head_down_sound = pygame.mixer.Sound("dependencies/audio/head-down-detected.mp3") | |
# --- CORE FUNCTIONS --- | |
def play_alarm(sound_to_play): | |
if not pygame.mixer.get_busy(): | |
sound_to_play.play() | |
def generate_alert(final_eye_ratio, final_mouth_ratio): | |
global EYE_THRESH_COUNTER, YAWN_THRESH_COUNTER | |
global drowsy_alert, yawn_alert | |
global DROWSY_COUNTER, YAWN_COUNTER | |
# Drowsiness check | |
if final_eye_ratio < EYE_ASPECT_RATIO_THRESHOLD: | |
EYE_THRESH_COUNTER += 1 | |
if EYE_THRESH_COUNTER >= EYE_CLOSED_THRESHOLD: | |
if not drowsy_alert: | |
DROWSY_COUNTER += 1 | |
drowsy_alert = True | |
Thread(target=play_alarm, args=(drowsiness_sound,)).start() | |
else: | |
EYE_THRESH_COUNTER = 0 | |
drowsy_alert = False | |
# Yawn check | |
if final_mouth_ratio > MOUTH_ASPECT_RATIO_THRESHOLD: | |
YAWN_THRESH_COUNTER += 1 | |
if YAWN_THRESH_COUNTER >= MOUTH_OPEN_THRESHOLD: | |
if not yawn_alert: | |
YAWN_COUNTER += 1 | |
yawn_alert = True | |
Thread(target=play_alarm, args=(yawn_sound,)).start() | |
else: | |
YAWN_THRESH_COUNTER = 0 | |
yawn_alert = False | |
def detect_facial_landmarks(x, y, w, h, gray_frame): | |
face = dlib.rectangle(int(x), int(y), int(x + w), int(y + h)) | |
face_landmarks = landmark_predictor(gray_frame, face) | |
face_landmarks = face_utils.shape_to_np(face_landmarks) | |
return face_landmarks | |
def eye_aspect_ratio(eye): | |
A = dist.euclidean(eye[1], eye[5]) | |
B = dist.euclidean(eye[2], eye[4]) | |
C = dist.euclidean(eye[0], eye[3]) | |
ear = (A + B) / (2.0 * C) | |
return ear | |
def final_eye_aspect_ratio(shape): | |
(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"] | |
(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"] | |
left_eye = shape[lStart:lEnd] | |
right_eye = shape[rStart:rEnd] | |
left_ear = eye_aspect_ratio(left_eye) | |
right_ear = eye_aspect_ratio(right_eye) | |
final_ear = (left_ear + right_ear) / 2.0 | |
return final_ear, left_eye, right_eye | |
def mouth_aspect_ratio(mouth): | |
A = dist.euclidean(mouth[2], mouth[10]) | |
B = dist.euclidean(mouth[4], mouth[8]) | |
C = dist.euclidean(mouth[0], mouth[6]) | |
mar = (A + B) / (2.0 * C) | |
return mar | |
def final_mouth_aspect_ratio(shape): | |
(mStart, mEnd) = face_utils.FACIAL_LANDMARKS_IDXS["mouth"] | |
mouth = shape[mStart:mEnd] | |
return mouth_aspect_ratio(mouth), mouth | |
def head_pose_ratio(shape): | |
nose_tip = shape[30] | |
chin_tip = shape[8] | |
left_face_corner = shape[0] | |
right_face_corner = shape[16] | |
nose_to_chin_dist = dist.euclidean(nose_tip, chin_tip) | |
face_width = dist.euclidean(left_face_corner, right_face_corner) | |
if face_width == 0: | |
return 0.0 | |
hpr = nose_to_chin_dist / face_width | |
return hpr | |
def reset_counters(): | |
global EYE_THRESH_COUNTER, YAWN_THRESH_COUNTER, FACE_LOST_COUNTER | |
global DROWSY_COUNTER, YAWN_COUNTER, HEAD_DOWN_COUNTER | |
global drowsy_alert, yawn_alert, head_down_alert | |
EYE_THRESH_COUNTER, YAWN_THRESH_COUNTER, FACE_LOST_COUNTER = 0, 0, 0 | |
DROWSY_COUNTER, YAWN_COUNTER, HEAD_DOWN_COUNTER = 0, 0, 0 | |
drowsy_alert, yawn_alert, head_down_alert = False, False, False | |
def process_frame(frame): | |
global FACE_LOST_COUNTER, head_down_alert, HEAD_DOWN_COUNTER | |
frame = imutils.resize(frame, width=640) | |
gray_frame = cv.cvtColor(frame, cv.COLOR_BGR2GRAY) | |
faces = face_detector.detectMultiScale(gray_frame, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30), flags=cv.CASCADE_SCALE_IMAGE) | |
if len(faces) > 0: | |
FACE_LOST_COUNTER = 0 | |
head_down_alert = False | |
(x, y, w, h) = faces[0] | |
face_landmarks = detect_facial_landmarks(x, y, w, h, gray_frame) | |
final_ear, left_eye, right_eye = final_eye_aspect_ratio(face_landmarks) | |
final_mar, mouth = final_mouth_aspect_ratio(face_landmarks) | |
# left_eye_hull, right_eye_hull, mouth_hull = cv.convexHull(left_eye), cv.convexHull(right_eye), cv.convexHull(mouth) | |
# cv.drawContours(frame, [left_eye_hull], -1, (0, 255, 0), 1) | |
# cv.drawContours(frame, [right_eye_hull], -1, (0, 255, 0), 1) | |
# cv.drawContours(frame, [mouth_hull], -1, (0, 255, 0), 1) | |
generate_alert(final_ear, final_mar) | |
cv.putText(frame, f"EAR: {final_ear:.2f}", (10, 30), font, 0.7, (0, 0, 255), 2) | |
cv.putText(frame, f"MAR: {final_mar:.2f}", (10, 60), font, 0.7, (0, 0, 255), 2) | |
else: | |
FACE_LOST_COUNTER += 1 | |
if FACE_LOST_COUNTER >= FACE_LOST_THRESHOLD and not head_down_alert: | |
HEAD_DOWN_COUNTER += 1 | |
head_down_alert = True | |
cv.putText(frame, f"Drowsy: {DROWSY_COUNTER}", (480, 30), font, 0.7, (255, 255, 0), 2) | |
cv.putText(frame, f"Yawn: {YAWN_COUNTER}", (480, 60), font, 0.7, (255, 255, 0), 2) | |
cv.putText(frame, f"Head Down: {HEAD_DOWN_COUNTER}", (480, 90), font, 0.7, (255, 255, 0), 2) | |
if drowsy_alert: cv.putText(frame, "DROWSINESS ALERT!", (150, 30), font, 0.9, (0, 0, 255), 2) | |
if yawn_alert: cv.putText(frame, "YAWN ALERT!", (200, 60), font, 0.9, (0, 0, 255), 2) | |
if head_down_alert: cv.putText(frame, "HEAD NOT VISIBLE!", (180, 90), font, 0.9, (0, 0, 255), 2) | |
return frame | |
def process_video(input_path, output_path=None): | |
reset_counters() | |
video_stream = cv.VideoCapture(input_path) | |
if not video_stream.isOpened(): | |
print(f"Error: Could not open video file {input_path}") | |
return False | |
fps = int(video_stream.get(cv.CAP_PROP_FPS)) | |
width = int(video_stream.get(cv.CAP_PROP_FRAME_WIDTH)) | |
height = int(video_stream.get(cv.CAP_PROP_FRAME_HEIGHT)) | |
print(f"Processing video: {input_path}") | |
print(f"Original Res: {width}x{height}, FPS: {fps}") | |
video_writer = None | |
if output_path: | |
fourcc = cv.VideoWriter_fourcc(*'mp4v') | |
# --- FIX: Calculate correct output dimensions to prevent corruption --- | |
# The process_frame function resizes frames to a fixed width of 640. | |
output_width = 640 | |
# Maintain aspect ratio | |
output_height = int(height * (output_width / float(width))) | |
output_dims = (output_width, output_height) | |
video_writer = cv.VideoWriter(output_path, fourcc, fps, output_dims) | |
print(f"Outputting video with Res: {output_dims[0]}x{output_dims[1]}") | |
while True: | |
ret, frame = video_stream.read() | |
if not ret: break | |
processed_frame = process_frame(frame) | |
if video_writer: video_writer.write(processed_frame) | |
video_stream.release() | |
if video_writer: video_writer.release() | |
print("Video processing complete!") | |
print(f"Final Stats - Drowsy: {DROWSY_COUNTER}, Yawn: {YAWN_COUNTER}, Head Down: {HEAD_DOWN_COUNTER}") | |
return True | |
def run_webcam(): | |
reset_counters() | |
video_stream = cv.VideoCapture(0) | |
if not video_stream.isOpened(): | |
print("Error: Could not open webcam") | |
return False | |
while True: | |
ret, frame = video_stream.read() | |
if not ret: | |
print("Failed to grab frame") | |
break | |
processed_frame = process_frame(frame) | |
cv.imshow("Live Drowsiness and Yawn Detection", processed_frame) | |
if cv.waitKey(1) & 0xFF == ord('q'): break | |
video_stream.release() | |
cv.destroyAllWindows() | |
return True | |
# --- MAIN EXECUTION LOOP --- | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description='Drowsiness Detection System') | |
parser.add_argument('--mode', choices=['webcam', 'video'], default='webcam', help='Mode of operation') | |
parser.add_argument('--input', type=str, help='Input video file path for video mode') | |
parser.add_argument('--output', type=str, help='Output video file path for video mode') | |
args = parser.parse_args() | |
if args.mode == 'webcam': | |
print("Starting webcam detection...") | |
run_webcam() | |
elif args.mode == 'video': | |
if not args.input: | |
print("Error: --input argument is required for video mode.") | |
elif not os.path.exists(args.input): | |
print(f"Error: Input file not found at {args.input}") | |
else: | |
process_video(args.input, args.output) |