Spaces:
Sleeping
Sleeping
Delete doc_qa_1.py
Browse files- doc_qa_1.py +0 -62
doc_qa_1.py
DELETED
@@ -1,62 +0,0 @@
|
|
1 |
-
from langchain.vectorstores import FAISS
|
2 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
4 |
-
from langchain.text_splitter import CharacterTextSplitter
|
5 |
-
from langchain.docstore.document import Document
|
6 |
-
from transformers import pipeline
|
7 |
-
from langchain.chains.question_answering import load_qa_chain
|
8 |
-
import os
|
9 |
-
|
10 |
-
# Step 1: Load QA pipeline (don't wrap in HuggingFacePipeline)
|
11 |
-
embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-small")
|
12 |
-
qa_pipeline = pipeline("question-answering", model="deepset/xlm-roberta-base-squad2")
|
13 |
-
multi_directory_path=r'tmp/'
|
14 |
-
|
15 |
-
def docs_vector_index():
|
16 |
-
from langchain.document_loaders import DirectoryLoader
|
17 |
-
# Define a directory path
|
18 |
-
directory_path = r"C:\Users\savni\PycharmProjects\DocsSearchEngine\tmp"
|
19 |
-
|
20 |
-
# Create the DirectoryLoader, specifying loaders for each file type
|
21 |
-
loader = DirectoryLoader(
|
22 |
-
directory_path,
|
23 |
-
glob="**/*", # This pattern loads all files; modify as needed
|
24 |
-
|
25 |
-
)
|
26 |
-
docs = loader.load()
|
27 |
-
|
28 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
29 |
-
chunk_size=1024, chunk_overlap=100, separators=[" ", ",", "\n", "."]
|
30 |
-
)
|
31 |
-
print(docs)
|
32 |
-
docs_chunks = text_splitter.split_documents(docs)
|
33 |
-
|
34 |
-
print(f"docs_chunks length: {len(docs_chunks)}")
|
35 |
-
print('********************docs_chunks',docs_chunks)
|
36 |
-
if len(docs_chunks)>0:
|
37 |
-
db = FAISS.from_documents(docs_chunks, embeddings)
|
38 |
-
return db
|
39 |
-
else:
|
40 |
-
return ''
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
def run_custom_qa(question, retrieved_docs):
|
45 |
-
context = " ".join([doc.page_content for doc in retrieved_docs])
|
46 |
-
output = qa_pipeline(question=question, context=context)
|
47 |
-
return output #output["answer"]
|
48 |
-
|
49 |
-
# # Step 6: Ask question
|
50 |
-
# question = "鏉变含澶у銇亜銇よō绔嬨仌銈屻伨銇椼仧銇嬶紵"
|
51 |
-
# relevant_docs = retriever.get_relevant_documents(question)
|
52 |
-
# answer = run_custom_qa(question, relevant_docs)
|
53 |
-
#
|
54 |
-
# print("Answer:", answer)
|
55 |
-
|
56 |
-
def doc_qa(query, db):
|
57 |
-
print("*************************custom qa doc_qa",query)
|
58 |
-
retriever = db.as_retriever()
|
59 |
-
relevant_docs = retriever.get_relevant_documents(query)
|
60 |
-
response=run_custom_qa(query, relevant_docs)
|
61 |
-
print('response', response)
|
62 |
-
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|