File size: 14,630 Bytes
7f683f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import os
import openai
import json
import uuid
import re
import asyncio
import time
import argparse
from typing import List, Dict, Optional, Tuple
from dotenv import load_dotenv

# --- Required Libraries ---
try:
    from docx import Document
except ImportError:
    print("Requirement Missing: Please install 'python-docx' (`pip install python-docx`)")
    exit()
# PDF library (PyPDF2) import removed
try:
    from langdetect import detect, DetectorFactory, LangDetectException
    DetectorFactory.seed = 0
except ImportError:
    print("Requirement Missing: Please install 'langdetect' (`pip install langdetect`)")
    exit()

# --- Configuration ---
load_dotenv()
API_KEY = os.environ.get("OPENAI_API_KEY")
if not API_KEY:
    print("🛑 ERROR: OpenAI API key not found. Set OPENAI_API_KEY in your .env file.")
    exit()

OUTPUT_DIR = "data"
TRANSLATION_MODEL = "gpt-4o-mini"
MAX_CONCURRENT_TRANSLATIONS = 10
TARGET_LANGUAGE = "en"

# --- Chunking Configuration ---
PARAGRAPH_CHUNK_THRESHOLD = 2000 # Characters
CHUNK_SIZE = 800 # Characters
CHUNK_OVERLAP = 100 # Characters

# Validate chunking config
if CHUNK_OVERLAP >= CHUNK_SIZE:
     print(f"🛑 ERROR: CHUNK_OVERLAP ({CHUNK_OVERLAP}) must be less than CHUNK_SIZE ({CHUNK_SIZE}).")
     exit()

# --- Setup OpenAI Client ---
try:
    client = openai.AsyncOpenAI(api_key=API_KEY)
    print("✅ OpenAI Async Client Initialized.")
except Exception as e:
    print(f"🛑 ERROR: Failed to initialize OpenAI client: {e}")
    exit()

# --- Text Extraction Functions ---

def extract_text_from_docx(file_path: str) -> Optional[str]:
    """Extracts all text from a DOCX file."""
    try:
        doc = Document(file_path)
        full_text = [para.text for para in doc.paragraphs if para.text.strip()]
        print(f"  📄 Extracted {len(full_text)} paragraphs from DOCX: {os.path.basename(file_path)}")
        return "\n\n".join(full_text) # Use double newline join as a base
    except Exception as e:
        print(f"  ❌ ERROR reading DOCX file '{os.path.basename(file_path)}': {e}")
        return None

# --- PDF Extraction Function Removed ---

def extract_text_from_txt(file_path: str) -> Optional[str]:
    """Reads text from a TXT file."""
    try:
        with open(file_path, 'r', encoding='utf-8') as file:
            text = file.read()
            print(f"  📄 Read TXT file: {os.path.basename(file_path)} (length: {len(text)} chars)")
            return text
    except Exception as e:
        print(f"  ❌ ERROR reading TXT file '{os.path.basename(file_path)}': {e}")
        return None

# --- Text Processing Functions (segment, chunk, detect, translate - No changes needed here) ---

def _chunk_text(text: str, size: int, overlap: int) -> List[str]:
    """Helper function to chunk a single block of text."""
    # (Implementation remains the same as previous version)
    if not text: return []
    chunks = []
    start_index = 0
    text_len = len(text)
    while start_index < text_len:
        end_index = start_index + size
        chunk = text[start_index:end_index]
        chunks.append(chunk.strip())
        next_start = start_index + size - overlap
        if next_start <= start_index: next_start = start_index + 1
        start_index = next_start
        if start_index >= text_len: break
    return [c for c in chunks if c]

def segment_into_paragraphs_or_chunks(text: str) -> List[str]:
    """
    Segments text into paragraphs based on newlines.
    If a resulting paragraph exceeds PARAGRAPH_CHUNK_THRESHOLD,
    it chunks that specific paragraph instead.
    """
    # (Implementation remains the same as previous version)
    if not text: return []
    normalized_text = text.replace('\r\n', '\n').replace('\r', '\n')
    initial_segments = re.split(r'\n\s*\n+', normalized_text)
    initial_segments = [s.strip() for s in initial_segments if s.strip()]
    if len(initial_segments) <= 1 and '\n' in normalized_text:
        print("  Parsing: Double newline split yielded few segments, trying single newline split.")
        initial_segments = [s.strip() for s in normalized_text.split('\n') if s.strip()]
    if not initial_segments:
         print("  Parsing: No segments found after initial splitting.")
         return []
    print(f"  Parsing: Initial segmentation yielded {len(initial_segments)} segments.")
    final_segments = []
    long_segment_count = 0
    for segment in initial_segments:
        if len(segment) > PARAGRAPH_CHUNK_THRESHOLD:
            long_segment_count += 1
            print(f"    ❗ Segment ({len(segment)} chars > {PARAGRAPH_CHUNK_THRESHOLD}) is too long. Applying chunking (Size: {CHUNK_SIZE}, Overlap: {CHUNK_OVERLAP})...")
            chunks = _chunk_text(segment, CHUNK_SIZE, CHUNK_OVERLAP)
            print(f"      -> Chunked into {len(chunks)} pieces.")
            final_segments.extend(chunks)
        elif segment:
            final_segments.append(segment)
    if long_segment_count > 0:
        print(f"  Parsing: Chunking applied to {long_segment_count} long segments.")
    print(f"  🔪 Final segmentation/chunking resulted in {len(final_segments)} pieces.")
    return final_segments

def detect_language_safe(text: str, default_lang: str = "unknown") -> str:
    """Detects language, handling short text and errors."""
    # (Implementation remains the same as previous version)
    clean_text = text.strip()
    if not clean_text or len(clean_text) < 10: return default_lang
    try: return detect(clean_text)
    except LangDetectException: return default_lang
    except Exception as e:
        print(f"    ❌ Unexpected error during language detection: {e}")
        return "error"

async def translate_paragraph(text: str, target_lang: str, semaphore: asyncio.Semaphore) -> Tuple[str, Optional[str]]:
    """Translates a single paragraph/chunk using OpenAI, with rate limiting."""
    # (Implementation remains the same as previous version)
    async with semaphore:
        detected_lang = detect_language_safe(text)
        if detected_lang != 'he': return text, None
        print(f"    🌍 Translating Hebrew segment to {target_lang.upper()}: '{text[:60]}...'")
        prompt = f"Translate the following Hebrew text accurately to {target_lang}. Provide only the translation, without any introductory phrases.\nHebrew Text:\n```heb\n{text}\n```\nTranslation:"
        retries = 1
        for attempt in range(retries + 1):
            try:
                response = await client.chat.completions.create(
                    model=TRANSLATION_MODEL, messages=[ {"role": "system", "content": f"You are an expert translator specializing in Hebrew to {target_lang} translation. Provide only the translated text."}, {"role": "user", "content": prompt} ],
                    max_tokens=int(len(text.split()) * 2.5) + 50, temperature=0.1, n=1, stop=None, )
                translation = response.choices[0].message.content.strip()
                if translation:
                     if translation.strip() == text.strip():
                          print(f"    ⚠️ Translation attempt returned original text for: '{text[:60]}...'")
                          return text, "Translation Failed: Model returned original text"
                     return text, translation
                else:
                    print(f"    ❌ Translation attempt returned empty response for: '{text[:60]}...'")
                    if attempt == retries: return text, "Translation Failed: Empty Response"
            except openai.RateLimitError as e:
                wait_time = 5 * (attempt + 1)
                print(f"    ⏳ Rate limit hit during translation. Waiting {wait_time}s... ({e})")
                await asyncio.sleep(wait_time)
                if attempt == retries: return text, "Translation Failed: Rate Limited"
            except openai.APIError as e:
                 print(f"    ❌ OpenAI API Error during translation: {e}")
                 wait_time = 3 * (attempt + 1); await asyncio.sleep(wait_time)
                 if attempt == retries: return text, f"Translation Failed: API Error ({e.code})"
            except Exception as e:
                print(f"    ❌ Unexpected error during translation: {e}")
                if attempt == retries: return text, f"Translation Failed: Unexpected Error ({type(e).__name__})"
            if attempt < retries: await asyncio.sleep(2 * (attempt + 1))
        return text, "Translation Failed: Max Retries"


# --- Main Processing Function ---

async def process_file(input_path: str, output_dir: str):
    """Processes a single DOCX or TXT file: extracts, segments/chunks, translates, saves JSON."""
    print(f"\n--- Processing file: {os.path.basename(input_path)} ---")
    start_time = time.time()
    file_ext = os.path.splitext(input_path)[1].lower()
    extracted_text: Optional[str] = None

    # 1. Extract Text (Only DOCX and TXT)
    if file_ext == ".docx":
        extracted_text = extract_text_from_docx(input_path)
    elif file_ext == ".txt":
        extracted_text = extract_text_from_txt(input_path)
    else:
        # This case should ideally not be hit if input is pre-filtered, but acts as safeguard
        print(f"  ⚠️ Internal Skip: Unsupported extension '{file_ext}' passed to process_file.")
        return

    if not extracted_text or not extracted_text.strip():
        print("  ❌ Text extraction failed or returned empty. Skipping.")
        return

    # 2. Segment into Paragraphs or Chunks
    segments = segment_into_paragraphs_or_chunks(extracted_text)
    if not segments:
        print("  ❌ No paragraphs or chunks found after segmentation. Skipping.")
        return

    # 3. Translate Hebrew Segments (Asynchronously)
    output_data = []
    translation_semaphore = asyncio.Semaphore(MAX_CONCURRENT_TRANSLATIONS)
    tasks = []
    print(f"  🗣️ Preparing to translate {len(segments)} segments (max concurrent: {MAX_CONCURRENT_TRANSLATIONS})...")

    for i, seg_text in enumerate(segments):
        task = asyncio.create_task(translate_paragraph(seg_text, TARGET_LANGUAGE, translation_semaphore))
        tasks.append(task)

    translation_results = await asyncio.gather(*tasks)

    # 4. Format into JSON Structure
    print("  📝 Formatting results into JSON...")
    translation_failures = 0
    for i, (original_he, translation_en) in enumerate(translation_results):
        failure_msg = "Translation Failed"
        is_failure = isinstance(translation_en, str) and failure_msg in translation_en
        if is_failure:
            translation_failures += 1
            english_text = translation_en # Store the error message
        else:
            english_text = translation_en if translation_en else ""
        output_data.append({ "id": str(uuid.uuid4()), "hebrew": original_he, "english": english_text })

    if translation_failures > 0:
         print(f"  ⚠️ Encountered {translation_failures} translation failures out of {len(segments)} segments.")

    # 5. Save to JSON File
    base_filename = os.path.splitext(os.path.basename(input_path))[0]
    output_filename = f"{base_filename}.json"
    output_path = os.path.join(output_dir, output_filename)

    try:
        os.makedirs(output_dir, exist_ok=True)
        with open(output_path, 'w', encoding='utf-8') as f:
            json.dump(output_data, f, ensure_ascii=False, indent=2)
        end_time = time.time()
        print(f"✅ Successfully saved {len(output_data)} segments to: {output_path}")
        print(f"⏱️ File processing time: {end_time - start_time:.2f} seconds")
    except Exception as e:
        print(f"  ❌ ERROR saving JSON file '{output_path}': {e}")


# --- Script Execution ---

if __name__ == "__main__":
    # Update description to remove PDF mention
    parser = argparse.ArgumentParser(description="Process DOCX and TXT files into paragraph/chunk-based JSON with Hebrew-to-English translation.")
    parser.add_argument("input_paths", nargs='+', help="Path(s) to input file(s) or directory(ies) containing DOCX/TXT files.")
    parser.add_argument("-o", "--output_dir", default=OUTPUT_DIR, help=f"Directory to save output JSON files (default: '{OUTPUT_DIR}')")
    parser.add_argument("--chunk_threshold", type=int, default=PARAGRAPH_CHUNK_THRESHOLD, help="Max chars per paragraph before chunking.")
    parser.add_argument("--chunk_size", type=int, default=CHUNK_SIZE, help="Target chunk size in chars.")
    parser.add_argument("--chunk_overlap", type=int, default=CHUNK_OVERLAP, help="Chunk overlap in chars.")

    args = parser.parse_args()
    OUTPUT_DIR = args.output_dir
    PARAGRAPH_CHUNK_THRESHOLD = args.chunk_threshold
    CHUNK_SIZE = args.chunk_size
    CHUNK_OVERLAP = args.chunk_overlap

    if CHUNK_OVERLAP >= CHUNK_SIZE:
         print(f"🛑 ERROR: Chunk overlap ({CHUNK_OVERLAP}) must be less than chunk size ({CHUNK_SIZE}). Adjust --chunk_overlap or --chunk_size.")
         exit()

    print(f"🚀 Starting File Processor (DOCX & TXT only)...") # Updated startup message
    print(f"📂 Output Directory: {os.path.abspath(OUTPUT_DIR)}")
    print(f"🔪 Paragraph/Chunking Settings: Threshold={PARAGRAPH_CHUNK_THRESHOLD}, Size={CHUNK_SIZE}, Overlap={CHUNK_OVERLAP}")

    files_to_process = []
    for path in args.input_paths:
        if os.path.isfile(path):
            files_to_process.append(path)
        elif os.path.isdir(path):
            print(f"📁 Scanning directory: {path}")
            for filename in os.listdir(path):
                full_path = os.path.join(path, filename)
                if os.path.isfile(full_path):
                    files_to_process.append(full_path)
        else:
            print(f"⚠️ Warning: Input path not found or not a file/directory: {path}")

    # Update supported extensions list
    supported_extensions = ('.docx', '.txt')
    valid_files = [f for f in files_to_process if f.lower().endswith(supported_extensions)]

    if not valid_files:
        # Update message for no supported files found
        print(f"\n🛑 No supported files ({', '.join(supported_extensions)}) found in the specified paths. Exiting.")
    else:
        print(f"\nFound {len(valid_files)} supported files to process:")
        for f in valid_files:
            print(f"  - {os.path.basename(f)}")

        async def main():
            process_tasks = [process_file(f, OUTPUT_DIR) for f in valid_files]
            await asyncio.gather(*process_tasks)

        script_start_time = time.time()
        asyncio.run(main())
        script_end_time = time.time()
        print(f"\n🏁 File processing complete. Total script time: {script_end_time - script_start_time:.2f} seconds.")