|
|
|
|
|
|
|
import torch |
|
from transformers import AutoImageProcessor, AutoModelForObjectDetection |
|
from PIL import Image, ImageDraw, ImageFont |
|
import gradio as gr |
|
|
|
|
|
model_name = "hustvl/yolos-base" |
|
processor = AutoImageProcessor.from_pretrained(model_name) |
|
model = AutoModelForObjectDetection.from_pretrained(model_name) |
|
model.eval() |
|
|
|
if torch.cuda.is_available(): |
|
model.to(torch.float16).to("cuda") |
|
|
|
|
|
def detect_yolos(image, threshold=0.5): |
|
image = image.convert("RGB") |
|
inputs = processor(images=image, return_tensors="pt").to(model.device) |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
|
|
target_sizes = torch.tensor([image.size[::-1]], device=model.device) |
|
results = processor.post_process_object_detection(outputs, threshold=threshold, target_sizes=target_sizes)[0] |
|
|
|
draw = ImageDraw.Draw(image) |
|
font = ImageFont.load_default() |
|
detected_labels = [] |
|
|
|
for score, label_idx, box in zip(results["scores"], results["labels"], results["boxes"]): |
|
label = model.config.id2label[label_idx.item()] |
|
detected_labels.append(label) |
|
box = [round(i, 2) for i in box.tolist()] |
|
draw.rectangle(box, outline="green", width=2) |
|
draw.text((box[0], box[1] - 10), f"{label}: {score:.2f}", fill="green", font=font) |
|
|
|
label_summary = ", ".join(set(detected_labels)) if detected_labels else "No objects detected." |
|
return image, label_summary |
|
|
|
|
|
demo = gr.Interface( |
|
fn=detect_yolos, |
|
inputs=[ |
|
gr.Image(type="pil", label="Upload Image"), |
|
gr.Slider(0, 1, value=0.5, label="Confidence Threshold") |
|
], |
|
outputs=[ |
|
gr.Image(type="pil", label="Image with Detections"), |
|
gr.Textbox(label="Detected Object Names") |
|
], |
|
title="📦 YOLOS Object Detection + Label List", |
|
description="Detects objects using YOLOS and lists all object names in a textbox." |
|
) |
|
|
|
demo.launch() |
|
|