sivasanjay6264 commited on
Commit
df1adca
·
verified ·
1 Parent(s): 2f99bfb

Delete yolo

Browse files
Files changed (4) hide show
  1. yolo/README.md +0 -19
  2. yolo/app.py +0 -57
  3. yolo/huggingface.yml +0 -9
  4. yolo/requirements.txt +0 -5
yolo/README.md DELETED
@@ -1,19 +0,0 @@
1
- # YOLOS Object Detection with Gradio
2
-
3
- This Gradio demo uses the pretrained YOLOS transformer (`hustvl/yolos-base`) from Hugging Face Transformers to detect objects in uploaded images.
4
-
5
- ## Features
6
- - Upload any image
7
- - Detect objects with YOLOS
8
- - See bounding boxes and object labels
9
- - Adjustable confidence threshold
10
-
11
- ## Run Locally
12
- ```bash
13
- pip install -r requirements.txt
14
- python app.py
15
- ```
16
-
17
- ## Powered By
18
- - [Hugging Face Transformers](https://huggingface.co/transformers/)
19
- - [Gradio](https://gradio.app/)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolo/app.py DELETED
@@ -1,57 +0,0 @@
1
-
2
- # STEP 1: Install dependencies
3
- # Note: Use requirements.txt when deploying
4
- import torch
5
- from transformers import AutoImageProcessor, AutoModelForObjectDetection
6
- from PIL import Image, ImageDraw, ImageFont
7
- import gradio as gr
8
-
9
- # STEP 2: Load YOLOS model & processor
10
- model_name = "hustvl/yolos-base"
11
- processor = AutoImageProcessor.from_pretrained(model_name)
12
- model = AutoModelForObjectDetection.from_pretrained(model_name)
13
- model.eval()
14
-
15
- if torch.cuda.is_available():
16
- model.to(torch.float16).to("cuda")
17
-
18
- # STEP 3: Detection function with object name return
19
- def detect_yolos(image, threshold=0.5):
20
- image = image.convert("RGB")
21
- inputs = processor(images=image, return_tensors="pt").to(model.device)
22
- with torch.no_grad():
23
- outputs = model(**inputs)
24
-
25
- target_sizes = torch.tensor([image.size[::-1]], device=model.device)
26
- results = processor.post_process_object_detection(outputs, threshold=threshold, target_sizes=target_sizes)[0]
27
-
28
- draw = ImageDraw.Draw(image)
29
- font = ImageFont.load_default()
30
- detected_labels = []
31
-
32
- for score, label_idx, box in zip(results["scores"], results["labels"], results["boxes"]):
33
- label = model.config.id2label[label_idx.item()]
34
- detected_labels.append(label)
35
- box = [round(i, 2) for i in box.tolist()]
36
- draw.rectangle(box, outline="green", width=2)
37
- draw.text((box[0], box[1] - 10), f"{label}: {score:.2f}", fill="green", font=font)
38
-
39
- label_summary = ", ".join(set(detected_labels)) if detected_labels else "No objects detected."
40
- return image, label_summary
41
-
42
- # STEP 4: Gradio UI
43
- demo = gr.Interface(
44
- fn=detect_yolos,
45
- inputs=[
46
- gr.Image(type="pil", label="Upload Image"),
47
- gr.Slider(0, 1, value=0.5, label="Confidence Threshold")
48
- ],
49
- outputs=[
50
- gr.Image(type="pil", label="Image with Detections"),
51
- gr.Textbox(label="Detected Object Names")
52
- ],
53
- title="📦 YOLOS Object Detection + Label List",
54
- description="Detects objects using YOLOS and lists all object names in a textbox."
55
- )
56
-
57
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolo/huggingface.yml DELETED
@@ -1,9 +0,0 @@
1
- sdk: gradio
2
- sdk_version: 4.27.0
3
- python_version: 3.10
4
- app_file: app.py
5
- title: YOLOS Object Detection
6
- emoji: 📦
7
- color_from: green
8
- color_to: blue
9
- license: mit
 
 
 
 
 
 
 
 
 
 
yolo/requirements.txt DELETED
@@ -1,5 +0,0 @@
1
- gradio
2
- torch
3
- torchvision
4
- transformers
5
- pillow