Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,33 +1,75 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
-
import
|
4 |
-
from smolagents import CodeAgent, tool
|
5 |
-
from typing import Union, List, Dict, Optional
|
6 |
-
import matplotlib.pyplot as plt
|
7 |
-
import seaborn as sns
|
8 |
-
import os
|
9 |
from groq import Groq
|
10 |
-
|
11 |
-
import
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
class GroqLLM:
|
16 |
-
"""
|
|
|
|
|
|
|
17 |
def __init__(self, model_name="llama-3.1-8B-Instant"):
|
18 |
self.client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
19 |
self.model_name = model_name
|
20 |
|
21 |
def __call__(self, prompt: Union[str, dict, List[Dict]]) -> str:
|
22 |
-
"""Make the class callable as required by smolagents"""
|
23 |
try:
|
24 |
-
#
|
25 |
-
if isinstance(prompt, (dict, list))
|
26 |
-
prompt_str = str(prompt)
|
27 |
-
else:
|
28 |
-
prompt_str = str(prompt)
|
29 |
|
30 |
-
#
|
31 |
completion = self.client.chat.completions.create(
|
32 |
model=self.model_name,
|
33 |
messages=[{
|
@@ -40,274 +82,165 @@ class GroqLLM:
|
|
40 |
)
|
41 |
|
42 |
return completion.choices[0].message.content if completion.choices else "Error: No response generated"
|
43 |
-
|
44 |
except Exception as e:
|
45 |
error_msg = f"Error generating response: {str(e)}"
|
46 |
-
print(error_msg)
|
47 |
return error_msg
|
48 |
-
|
49 |
-
def generate(self, prompt: Union[str, dict, List[Dict]], **kwargs) -> object:
|
50 |
-
"""Add generate method to make compatible with smolagents CodeAgent
|
51 |
-
|
52 |
-
Args:
|
53 |
-
prompt: The prompt to send to the model
|
54 |
-
**kwargs: Additional keyword arguments to support CodeAgent API
|
55 |
-
(stop_sequences, etc.) - these are ignored in the Groq implementation
|
56 |
-
|
57 |
-
Returns:
|
58 |
-
An object with a 'content' attribute containing the response text
|
59 |
-
"""
|
60 |
-
response_text = self.__call__(prompt)
|
61 |
-
|
62 |
-
# Create a simple object with a content attribute
|
63 |
-
class Response:
|
64 |
-
def __init__(self, content):
|
65 |
-
self.content = content
|
66 |
-
|
67 |
-
return Response(response_text)
|
68 |
-
|
69 |
-
class DataAnalysisAgent(CodeAgent):
|
70 |
-
"""Extended CodeAgent with dataset awareness"""
|
71 |
-
def __init__(self, dataset: pd.DataFrame, *args, **kwargs):
|
72 |
-
super().__init__(*args, **kwargs)
|
73 |
-
self._dataset = dataset
|
74 |
-
|
75 |
-
@property
|
76 |
-
def dataset(self) -> pd.DataFrame:
|
77 |
-
"""Access the stored dataset"""
|
78 |
-
return self._dataset
|
79 |
|
80 |
-
|
81 |
-
"""Override run method to include dataset context"""
|
82 |
-
dataset_info = f"""
|
83 |
-
Dataset Shape: {self.dataset.shape}
|
84 |
-
Columns: {', '.join(self.dataset.columns)}
|
85 |
-
Data Types: {self.dataset.dtypes.to_dict()}
|
86 |
-
"""
|
87 |
-
enhanced_prompt = f"""
|
88 |
-
Analyze the following dataset:
|
89 |
-
{dataset_info}
|
90 |
-
|
91 |
-
Task: {prompt}
|
92 |
-
|
93 |
-
Use the provided tools to analyze this specific dataset and return detailed results.
|
94 |
-
"""
|
95 |
-
return super().run(enhanced_prompt)
|
96 |
-
|
97 |
-
@tool
|
98 |
-
def analyze_basic_stats(data: pd.DataFrame) -> str:
|
99 |
-
"""Calculate basic statistical measures for numerical columns in the dataset.
|
100 |
-
|
101 |
-
This function computes fundamental statistical metrics including mean, median,
|
102 |
-
standard deviation, skewness, and counts of missing values for all numerical
|
103 |
-
columns in the provided DataFrame.
|
104 |
-
|
105 |
-
Args:
|
106 |
-
data: A pandas DataFrame containing the dataset to analyze. The DataFrame
|
107 |
-
should contain at least one numerical column for meaningful analysis.
|
108 |
-
|
109 |
-
Returns:
|
110 |
-
str: A string containing formatted basic statistics for each numerical column,
|
111 |
-
including mean, median, standard deviation, skewness, and missing value counts.
|
112 |
"""
|
113 |
-
|
114 |
-
|
115 |
-
data = tool.agent.dataset
|
116 |
-
|
117 |
-
stats = {}
|
118 |
-
numeric_cols = data.select_dtypes(include=[np.number]).columns
|
119 |
-
|
120 |
-
for col in numeric_cols:
|
121 |
-
stats[col] = {
|
122 |
-
'mean': float(data[col].mean()),
|
123 |
-
'median': float(data[col].median()),
|
124 |
-
'std': float(data[col].std()),
|
125 |
-
'skew': float(data[col].skew()),
|
126 |
-
'missing': int(data[col].isnull().sum())
|
127 |
-
}
|
128 |
-
|
129 |
-
return str(stats)
|
130 |
-
|
131 |
-
@tool
|
132 |
-
def generate_correlation_matrix(data: pd.DataFrame) -> str:
|
133 |
-
"""Generate a visual correlation matrix for numerical columns in the dataset.
|
134 |
-
|
135 |
-
This function creates a heatmap visualization showing the correlations between
|
136 |
-
all numerical columns in the dataset. The correlation values are displayed
|
137 |
-
using a color-coded matrix for easy interpretation.
|
138 |
-
|
139 |
-
Args:
|
140 |
-
data: A pandas DataFrame containing the dataset to analyze. The DataFrame
|
141 |
-
should contain at least two numerical columns for correlation analysis.
|
142 |
-
|
143 |
-
Returns:
|
144 |
-
str: A base64 encoded string representing the correlation matrix plot image,
|
145 |
-
which can be displayed in a web interface or saved as an image file.
|
146 |
"""
|
147 |
-
|
148 |
-
|
149 |
-
data = tool.agent.dataset
|
150 |
-
|
151 |
-
numeric_data = data.select_dtypes(include=[np.number])
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
|
|
|
156 |
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
return base64.b64encode(buf.getvalue()).decode()
|
161 |
-
|
162 |
-
@tool
|
163 |
-
def analyze_categorical_columns(data: pd.DataFrame) -> str:
|
164 |
-
"""Analyze categorical columns in the dataset for distribution and frequencies.
|
165 |
|
166 |
-
|
167 |
-
|
|
|
|
|
168 |
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
# Access dataset from agent if no data provided
|
178 |
-
if data is None:
|
179 |
-
data = tool.agent.dataset
|
180 |
-
|
181 |
-
categorical_cols = data.select_dtypes(include=['object', 'category']).columns
|
182 |
-
analysis = {}
|
183 |
|
184 |
-
|
185 |
-
analysis[col] = {
|
186 |
-
'unique_values': int(data[col].nunique()),
|
187 |
-
'top_categories': data[col].value_counts().head(5).to_dict(),
|
188 |
-
'missing': int(data[col].isnull().sum())
|
189 |
-
}
|
190 |
-
|
191 |
-
return str(analysis)
|
192 |
|
193 |
-
|
194 |
-
def suggest_features(data: pd.DataFrame) -> str:
|
195 |
-
"""Suggest potential feature engineering steps based on data characteristics.
|
196 |
-
|
197 |
-
This function analyzes the dataset's structure and statistical properties to
|
198 |
-
recommend possible feature engineering steps that could improve model performance.
|
199 |
-
|
200 |
-
Args:
|
201 |
-
data: A pandas DataFrame containing the dataset to analyze. The DataFrame
|
202 |
-
can contain both numerical and categorical columns.
|
203 |
-
|
204 |
-
Returns:
|
205 |
-
str: A string containing suggestions for feature engineering based on
|
206 |
-
the characteristics of the input data.
|
207 |
"""
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
suggestions.append("Consider creating interaction terms between numerical features")
|
218 |
-
|
219 |
-
if len(categorical_cols) > 0:
|
220 |
-
suggestions.append("Consider one-hot encoding for categorical variables")
|
221 |
-
|
222 |
-
for col in numeric_cols:
|
223 |
-
if data[col].skew() > 1 or data[col].skew() < -1:
|
224 |
-
suggestions.append(f"Consider log transformation for {col} due to skewness")
|
225 |
-
|
226 |
-
return '\n'.join(suggestions)
|
227 |
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
)
|
273 |
-
|
274 |
-
|
275 |
-
elif analysis_type == "Correlation Analysis":
|
276 |
-
with st.spinner('Generating correlation matrix...'):
|
277 |
-
result = st.session_state['agent'].run(
|
278 |
-
"Use the generate_correlation_matrix tool to analyze correlations "
|
279 |
-
"and explain any strong relationships found."
|
280 |
-
)
|
281 |
-
if isinstance(result, str) and result.startswith('data:image') or ',' in result:
|
282 |
-
st.image(f"data:image/png;base64,{result.split(',')[-1]}")
|
283 |
-
else:
|
284 |
-
st.write(result)
|
285 |
-
|
286 |
-
elif analysis_type == "Categorical Analysis":
|
287 |
-
with st.spinner('Analyzing categorical columns...'):
|
288 |
-
result = st.session_state['agent'].run(
|
289 |
-
"Use the analyze_categorical_columns tool to examine the "
|
290 |
-
"categorical variables and explain the distributions."
|
291 |
-
)
|
292 |
-
st.write(result)
|
293 |
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
"feature engineering steps for this dataset."
|
299 |
)
|
300 |
-
st.write(result)
|
301 |
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
|
309 |
-
|
310 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
|
312 |
-
|
313 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from typing import Union, List, Dict
|
|
|
|
|
|
|
|
|
|
|
4 |
from groq import Groq
|
5 |
+
import os
|
6 |
+
from duckduckgo_search import DDGS
|
7 |
+
|
8 |
+
class DuckDuckGoSearch:
|
9 |
+
"""
|
10 |
+
Custom DuckDuckGo search implementation with robust error handling and result processing.
|
11 |
+
Uses the duckduckgo_search library to fetch and format news results.
|
12 |
+
"""
|
13 |
+
def __init__(self):
|
14 |
+
# Initialize the DuckDuckGo search session
|
15 |
+
self.ddgs = DDGS()
|
16 |
+
|
17 |
+
def __call__(self, query: str, max_results: int = 5) -> str:
|
18 |
+
try:
|
19 |
+
# Perform the search and get results
|
20 |
+
# The news method is more appropriate for recent news analysis
|
21 |
+
search_results = list(self.ddgs.news(
|
22 |
+
query,
|
23 |
+
max_results=max_results,
|
24 |
+
region='wt-wt', # Worldwide results
|
25 |
+
safesearch='on'
|
26 |
+
))
|
27 |
+
|
28 |
+
if not search_results:
|
29 |
+
return "No results found. Try modifying your search query."
|
30 |
+
|
31 |
+
# Format the results into a readable string
|
32 |
+
formatted_results = []
|
33 |
+
for idx, result in enumerate(search_results, 1):
|
34 |
+
# Extract available fields with fallbacks for missing data
|
35 |
+
title = result.get('title', 'No title available')
|
36 |
+
snippet = result.get('body', result.get('snippet', 'No description available'))
|
37 |
+
source = result.get('source', 'Unknown source')
|
38 |
+
url = result.get('url', result.get('link', 'No link available'))
|
39 |
+
date = result.get('date', 'Date not available')
|
40 |
+
|
41 |
+
# Format each result with available information
|
42 |
+
formatted_results.append(
|
43 |
+
f"{idx}. Title: {title}\n"
|
44 |
+
f" Date: {date}\n"
|
45 |
+
f" Source: {source}\n"
|
46 |
+
f" Summary: {snippet}\n"
|
47 |
+
f" URL: {url}\n"
|
48 |
+
)
|
49 |
+
|
50 |
+
return "\n".join(formatted_results)
|
51 |
+
|
52 |
+
except Exception as e:
|
53 |
+
# Provide detailed error information for debugging
|
54 |
+
error_msg = f"Search error: {str(e)}\nTry again with a different search term or check your internet connection."
|
55 |
+
print(f"DuckDuckGo search error: {str(e)}") # For logging
|
56 |
+
return error_msg
|
57 |
|
58 |
class GroqLLM:
|
59 |
+
"""
|
60 |
+
LLM interface using Groq's LLama model.
|
61 |
+
Handles API communication and response processing.
|
62 |
+
"""
|
63 |
def __init__(self, model_name="llama-3.1-8B-Instant"):
|
64 |
self.client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
65 |
self.model_name = model_name
|
66 |
|
67 |
def __call__(self, prompt: Union[str, dict, List[Dict]]) -> str:
|
|
|
68 |
try:
|
69 |
+
# Convert prompt to string if it's a complex structure
|
70 |
+
prompt_str = str(prompt) if isinstance(prompt, (dict, list)) else prompt
|
|
|
|
|
|
|
71 |
|
72 |
+
# Make API call to Groq
|
73 |
completion = self.client.chat.completions.create(
|
74 |
model=self.model_name,
|
75 |
messages=[{
|
|
|
82 |
)
|
83 |
|
84 |
return completion.choices[0].message.content if completion.choices else "Error: No response generated"
|
|
|
85 |
except Exception as e:
|
86 |
error_msg = f"Error generating response: {str(e)}"
|
87 |
+
print(error_msg) # For logging
|
88 |
return error_msg
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
def create_analysis_prompt(topic: str, search_results: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
"""
|
92 |
+
Creates a detailed prompt for news analysis, structuring the request
|
93 |
+
to get comprehensive and well-organized results from the LLM.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
"""
|
95 |
+
return f"""Analyze the following news information about {topic}.
|
96 |
+
Search Results: {search_results}
|
|
|
|
|
|
|
97 |
|
98 |
+
Please provide a comprehensive analysis including:
|
99 |
+
1. Key Points Summary:
|
100 |
+
- Main events and developments
|
101 |
+
- Critical updates and changes
|
102 |
|
103 |
+
2. Stakeholder Analysis:
|
104 |
+
- Primary parties involved
|
105 |
+
- Their roles and positions
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
3. Impact Assessment:
|
108 |
+
- Immediate implications
|
109 |
+
- Potential long-term effects
|
110 |
+
- Broader context and significance
|
111 |
|
112 |
+
4. Multiple Perspectives:
|
113 |
+
- Different viewpoints on the issue
|
114 |
+
- Areas of agreement and contention
|
115 |
|
116 |
+
5. Fact Check & Reliability:
|
117 |
+
- Verification of major claims
|
118 |
+
- Consistency across sources
|
119 |
+
- Source credibility assessment
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
+
Please format the analysis in a clear, journalistic style with section headers."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
+
def log_agent_activity(prompt: str, result: str, agent_name: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
"""
|
125 |
+
Creates an expandable log of agent activities in the Streamlit interface
|
126 |
+
for transparency and debugging purposes.
|
127 |
+
"""
|
128 |
+
with st.expander("View Agent Activity Log"):
|
129 |
+
st.write(f"### Agent Activity ({agent_name}):")
|
130 |
+
st.write("**Input Prompt:**")
|
131 |
+
st.code(prompt, language="text")
|
132 |
+
st.write("**Analysis Output:**")
|
133 |
+
st.code(result, language="text")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
+
# Initialize Streamlit app
|
136 |
+
st.set_page_config(page_title="News Analysis Tool", layout="wide")
|
137 |
+
|
138 |
+
# Title and description
|
139 |
+
st.title("π AI News Analysis Tool")
|
140 |
+
st.write("""
|
141 |
+
This tool combines the power of Groq's LLama 3.1 8B Instant model with DuckDuckGo
|
142 |
+
search to provide in-depth news analysis. Get comprehensive insights and multiple
|
143 |
+
perspectives on any news topic.
|
144 |
+
""")
|
145 |
+
|
146 |
+
# Initialize the components
|
147 |
+
try:
|
148 |
+
# Initialize LLM and search tool
|
149 |
+
llm = GroqLLM()
|
150 |
+
search_tool = DuckDuckGoSearch()
|
151 |
+
|
152 |
+
# Input section
|
153 |
+
news_topic = st.text_input(
|
154 |
+
"Enter News Topic or Query:",
|
155 |
+
placeholder="E.g., Recent developments in renewable energy"
|
156 |
+
)
|
157 |
+
|
158 |
+
# Analysis options
|
159 |
+
col1, col2 = st.columns(2)
|
160 |
+
with col1:
|
161 |
+
search_depth = st.slider(
|
162 |
+
"Search Depth (number of results)",
|
163 |
+
min_value=3,
|
164 |
+
max_value=10,
|
165 |
+
value=5
|
166 |
+
)
|
167 |
+
with col2:
|
168 |
+
analysis_type = st.selectbox(
|
169 |
+
"Analysis Type",
|
170 |
+
["Comprehensive", "Quick Summary", "Technical", "Simplified"]
|
171 |
+
)
|
172 |
+
|
173 |
+
# Generate analysis button
|
174 |
+
if st.button("Analyze News"):
|
175 |
+
if news_topic:
|
176 |
+
with st.spinner("Gathering information and analyzing..."):
|
177 |
+
try:
|
178 |
+
# Show search progress
|
179 |
+
search_placeholder = st.empty()
|
180 |
+
search_placeholder.info("Searching for recent news...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
|
182 |
+
# Perform search
|
183 |
+
search_results = search_tool(
|
184 |
+
f"Latest news about {news_topic} last 7 days",
|
185 |
+
max_results=search_depth
|
|
|
186 |
)
|
|
|
187 |
|
188 |
+
if not search_results.startswith(("Search error", "No results")):
|
189 |
+
# Update progress
|
190 |
+
search_placeholder.info("Analyzing search results...")
|
191 |
+
|
192 |
+
# Create analysis prompt
|
193 |
+
analysis_prompt = create_analysis_prompt(news_topic, search_results)
|
194 |
+
|
195 |
+
# Get analysis from LLM
|
196 |
+
analysis_result = llm(analysis_prompt)
|
197 |
+
|
198 |
+
# Clear progress messages
|
199 |
+
search_placeholder.empty()
|
200 |
+
|
201 |
+
# Display results
|
202 |
+
st.subheader("π Analysis Results")
|
203 |
+
st.markdown(analysis_result)
|
204 |
|
205 |
+
# Log the activity
|
206 |
+
log_agent_activity(
|
207 |
+
analysis_prompt,
|
208 |
+
analysis_result,
|
209 |
+
"News Analysis Agent"
|
210 |
+
)
|
211 |
+
else:
|
212 |
+
search_placeholder.empty()
|
213 |
+
st.error(search_results)
|
214 |
+
|
215 |
+
except Exception as e:
|
216 |
+
st.error(f"An error occurred during analysis: {str(e)}")
|
217 |
+
else:
|
218 |
+
st.warning("Please enter a news topic to analyze.")
|
219 |
+
|
220 |
+
# Add helpful tips
|
221 |
+
with st.expander("π‘ Tips for Better Results"):
|
222 |
+
st.write("""
|
223 |
+
- Be specific with your topic for more focused analysis
|
224 |
+
- Use keywords related to recent events for timely information
|
225 |
+
- Consider including timeframes in your query
|
226 |
+
- Try different analysis types for various perspectives
|
227 |
+
- For complex topics, start with a broader search and then narrow down
|
228 |
+
""")
|
229 |
+
|
230 |
+
except Exception as e:
|
231 |
+
st.error(f"""
|
232 |
+
Failed to initialize the application: {str(e)}
|
233 |
+
|
234 |
+
Please ensure:
|
235 |
+
1. Your GROQ_API_KEY is properly set in environment variables
|
236 |
+
2. All required packages are installed:
|
237 |
+
- pip install streamlit groq duckduckgo-search
|
238 |
+
3. You have internet connectivity for DuckDuckGo searches
|
239 |
+
""")
|
240 |
|
241 |
+
# Footer
|
242 |
+
st.markdown("---")
|
243 |
+
st.caption(
|
244 |
+
"Powered by Groq LLama 3.1 8B Instant, DuckDuckGo, and Streamlit | "
|
245 |
+
"Created for news analysis and research purposes"
|
246 |
+
)
|