Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,33 +1,75 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
import
|
| 3 |
-
import
|
| 4 |
-
from smolagents import CodeAgent, tool
|
| 5 |
-
from typing import Union, List, Dict, Optional
|
| 6 |
-
import matplotlib.pyplot as plt
|
| 7 |
-
import seaborn as sns
|
| 8 |
-
import os
|
| 9 |
from groq import Groq
|
| 10 |
-
|
| 11 |
-
import
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
class GroqLLM:
|
| 16 |
-
"""
|
|
|
|
|
|
|
|
|
|
| 17 |
def __init__(self, model_name="llama-3.1-8B-Instant"):
|
| 18 |
self.client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
| 19 |
self.model_name = model_name
|
| 20 |
|
| 21 |
def __call__(self, prompt: Union[str, dict, List[Dict]]) -> str:
|
| 22 |
-
"""Make the class callable as required by smolagents"""
|
| 23 |
try:
|
| 24 |
-
#
|
| 25 |
-
if isinstance(prompt, (dict, list))
|
| 26 |
-
prompt_str = str(prompt)
|
| 27 |
-
else:
|
| 28 |
-
prompt_str = str(prompt)
|
| 29 |
|
| 30 |
-
#
|
| 31 |
completion = self.client.chat.completions.create(
|
| 32 |
model=self.model_name,
|
| 33 |
messages=[{
|
|
@@ -40,274 +82,165 @@ class GroqLLM:
|
|
| 40 |
)
|
| 41 |
|
| 42 |
return completion.choices[0].message.content if completion.choices else "Error: No response generated"
|
| 43 |
-
|
| 44 |
except Exception as e:
|
| 45 |
error_msg = f"Error generating response: {str(e)}"
|
| 46 |
-
print(error_msg)
|
| 47 |
return error_msg
|
| 48 |
-
|
| 49 |
-
def generate(self, prompt: Union[str, dict, List[Dict]], **kwargs) -> object:
|
| 50 |
-
"""Add generate method to make compatible with smolagents CodeAgent
|
| 51 |
-
|
| 52 |
-
Args:
|
| 53 |
-
prompt: The prompt to send to the model
|
| 54 |
-
**kwargs: Additional keyword arguments to support CodeAgent API
|
| 55 |
-
(stop_sequences, etc.) - these are ignored in the Groq implementation
|
| 56 |
-
|
| 57 |
-
Returns:
|
| 58 |
-
An object with a 'content' attribute containing the response text
|
| 59 |
-
"""
|
| 60 |
-
response_text = self.__call__(prompt)
|
| 61 |
-
|
| 62 |
-
# Create a simple object with a content attribute
|
| 63 |
-
class Response:
|
| 64 |
-
def __init__(self, content):
|
| 65 |
-
self.content = content
|
| 66 |
-
|
| 67 |
-
return Response(response_text)
|
| 68 |
-
|
| 69 |
-
class DataAnalysisAgent(CodeAgent):
|
| 70 |
-
"""Extended CodeAgent with dataset awareness"""
|
| 71 |
-
def __init__(self, dataset: pd.DataFrame, *args, **kwargs):
|
| 72 |
-
super().__init__(*args, **kwargs)
|
| 73 |
-
self._dataset = dataset
|
| 74 |
-
|
| 75 |
-
@property
|
| 76 |
-
def dataset(self) -> pd.DataFrame:
|
| 77 |
-
"""Access the stored dataset"""
|
| 78 |
-
return self._dataset
|
| 79 |
|
| 80 |
-
|
| 81 |
-
"""Override run method to include dataset context"""
|
| 82 |
-
dataset_info = f"""
|
| 83 |
-
Dataset Shape: {self.dataset.shape}
|
| 84 |
-
Columns: {', '.join(self.dataset.columns)}
|
| 85 |
-
Data Types: {self.dataset.dtypes.to_dict()}
|
| 86 |
-
"""
|
| 87 |
-
enhanced_prompt = f"""
|
| 88 |
-
Analyze the following dataset:
|
| 89 |
-
{dataset_info}
|
| 90 |
-
|
| 91 |
-
Task: {prompt}
|
| 92 |
-
|
| 93 |
-
Use the provided tools to analyze this specific dataset and return detailed results.
|
| 94 |
-
"""
|
| 95 |
-
return super().run(enhanced_prompt)
|
| 96 |
-
|
| 97 |
-
@tool
|
| 98 |
-
def analyze_basic_stats(data: pd.DataFrame) -> str:
|
| 99 |
-
"""Calculate basic statistical measures for numerical columns in the dataset.
|
| 100 |
-
|
| 101 |
-
This function computes fundamental statistical metrics including mean, median,
|
| 102 |
-
standard deviation, skewness, and counts of missing values for all numerical
|
| 103 |
-
columns in the provided DataFrame.
|
| 104 |
-
|
| 105 |
-
Args:
|
| 106 |
-
data: A pandas DataFrame containing the dataset to analyze. The DataFrame
|
| 107 |
-
should contain at least one numerical column for meaningful analysis.
|
| 108 |
-
|
| 109 |
-
Returns:
|
| 110 |
-
str: A string containing formatted basic statistics for each numerical column,
|
| 111 |
-
including mean, median, standard deviation, skewness, and missing value counts.
|
| 112 |
"""
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
data = tool.agent.dataset
|
| 116 |
-
|
| 117 |
-
stats = {}
|
| 118 |
-
numeric_cols = data.select_dtypes(include=[np.number]).columns
|
| 119 |
-
|
| 120 |
-
for col in numeric_cols:
|
| 121 |
-
stats[col] = {
|
| 122 |
-
'mean': float(data[col].mean()),
|
| 123 |
-
'median': float(data[col].median()),
|
| 124 |
-
'std': float(data[col].std()),
|
| 125 |
-
'skew': float(data[col].skew()),
|
| 126 |
-
'missing': int(data[col].isnull().sum())
|
| 127 |
-
}
|
| 128 |
-
|
| 129 |
-
return str(stats)
|
| 130 |
-
|
| 131 |
-
@tool
|
| 132 |
-
def generate_correlation_matrix(data: pd.DataFrame) -> str:
|
| 133 |
-
"""Generate a visual correlation matrix for numerical columns in the dataset.
|
| 134 |
-
|
| 135 |
-
This function creates a heatmap visualization showing the correlations between
|
| 136 |
-
all numerical columns in the dataset. The correlation values are displayed
|
| 137 |
-
using a color-coded matrix for easy interpretation.
|
| 138 |
-
|
| 139 |
-
Args:
|
| 140 |
-
data: A pandas DataFrame containing the dataset to analyze. The DataFrame
|
| 141 |
-
should contain at least two numerical columns for correlation analysis.
|
| 142 |
-
|
| 143 |
-
Returns:
|
| 144 |
-
str: A base64 encoded string representing the correlation matrix plot image,
|
| 145 |
-
which can be displayed in a web interface or saved as an image file.
|
| 146 |
"""
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
data = tool.agent.dataset
|
| 150 |
-
|
| 151 |
-
numeric_data = data.select_dtypes(include=[np.number])
|
| 152 |
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
|
|
|
| 156 |
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
return base64.b64encode(buf.getvalue()).decode()
|
| 161 |
-
|
| 162 |
-
@tool
|
| 163 |
-
def analyze_categorical_columns(data: pd.DataFrame) -> str:
|
| 164 |
-
"""Analyze categorical columns in the dataset for distribution and frequencies.
|
| 165 |
|
| 166 |
-
|
| 167 |
-
|
|
|
|
|
|
|
| 168 |
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
# Access dataset from agent if no data provided
|
| 178 |
-
if data is None:
|
| 179 |
-
data = tool.agent.dataset
|
| 180 |
-
|
| 181 |
-
categorical_cols = data.select_dtypes(include=['object', 'category']).columns
|
| 182 |
-
analysis = {}
|
| 183 |
|
| 184 |
-
|
| 185 |
-
analysis[col] = {
|
| 186 |
-
'unique_values': int(data[col].nunique()),
|
| 187 |
-
'top_categories': data[col].value_counts().head(5).to_dict(),
|
| 188 |
-
'missing': int(data[col].isnull().sum())
|
| 189 |
-
}
|
| 190 |
-
|
| 191 |
-
return str(analysis)
|
| 192 |
|
| 193 |
-
|
| 194 |
-
def suggest_features(data: pd.DataFrame) -> str:
|
| 195 |
-
"""Suggest potential feature engineering steps based on data characteristics.
|
| 196 |
-
|
| 197 |
-
This function analyzes the dataset's structure and statistical properties to
|
| 198 |
-
recommend possible feature engineering steps that could improve model performance.
|
| 199 |
-
|
| 200 |
-
Args:
|
| 201 |
-
data: A pandas DataFrame containing the dataset to analyze. The DataFrame
|
| 202 |
-
can contain both numerical and categorical columns.
|
| 203 |
-
|
| 204 |
-
Returns:
|
| 205 |
-
str: A string containing suggestions for feature engineering based on
|
| 206 |
-
the characteristics of the input data.
|
| 207 |
"""
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
suggestions.append("Consider creating interaction terms between numerical features")
|
| 218 |
-
|
| 219 |
-
if len(categorical_cols) > 0:
|
| 220 |
-
suggestions.append("Consider one-hot encoding for categorical variables")
|
| 221 |
-
|
| 222 |
-
for col in numeric_cols:
|
| 223 |
-
if data[col].skew() > 1 or data[col].skew() < -1:
|
| 224 |
-
suggestions.append(f"Consider log transformation for {col} due to skewness")
|
| 225 |
-
|
| 226 |
-
return '\n'.join(suggestions)
|
| 227 |
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
)
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
elif analysis_type == "Correlation Analysis":
|
| 276 |
-
with st.spinner('Generating correlation matrix...'):
|
| 277 |
-
result = st.session_state['agent'].run(
|
| 278 |
-
"Use the generate_correlation_matrix tool to analyze correlations "
|
| 279 |
-
"and explain any strong relationships found."
|
| 280 |
-
)
|
| 281 |
-
if isinstance(result, str) and result.startswith('data:image') or ',' in result:
|
| 282 |
-
st.image(f"data:image/png;base64,{result.split(',')[-1]}")
|
| 283 |
-
else:
|
| 284 |
-
st.write(result)
|
| 285 |
-
|
| 286 |
-
elif analysis_type == "Categorical Analysis":
|
| 287 |
-
with st.spinner('Analyzing categorical columns...'):
|
| 288 |
-
result = st.session_state['agent'].run(
|
| 289 |
-
"Use the analyze_categorical_columns tool to examine the "
|
| 290 |
-
"categorical variables and explain the distributions."
|
| 291 |
-
)
|
| 292 |
-
st.write(result)
|
| 293 |
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
"feature engineering steps for this dataset."
|
| 299 |
)
|
| 300 |
-
st.write(result)
|
| 301 |
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 308 |
|
| 309 |
-
|
| 310 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 311 |
|
| 312 |
-
|
| 313 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from typing import Union, List, Dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from groq import Groq
|
| 5 |
+
import os
|
| 6 |
+
from duckduckgo_search import DDGS
|
| 7 |
+
|
| 8 |
+
class DuckDuckGoSearch:
|
| 9 |
+
"""
|
| 10 |
+
Custom DuckDuckGo search implementation with robust error handling and result processing.
|
| 11 |
+
Uses the duckduckgo_search library to fetch and format news results.
|
| 12 |
+
"""
|
| 13 |
+
def __init__(self):
|
| 14 |
+
# Initialize the DuckDuckGo search session
|
| 15 |
+
self.ddgs = DDGS()
|
| 16 |
+
|
| 17 |
+
def __call__(self, query: str, max_results: int = 5) -> str:
|
| 18 |
+
try:
|
| 19 |
+
# Perform the search and get results
|
| 20 |
+
# The news method is more appropriate for recent news analysis
|
| 21 |
+
search_results = list(self.ddgs.news(
|
| 22 |
+
query,
|
| 23 |
+
max_results=max_results,
|
| 24 |
+
region='wt-wt', # Worldwide results
|
| 25 |
+
safesearch='on'
|
| 26 |
+
))
|
| 27 |
+
|
| 28 |
+
if not search_results:
|
| 29 |
+
return "No results found. Try modifying your search query."
|
| 30 |
+
|
| 31 |
+
# Format the results into a readable string
|
| 32 |
+
formatted_results = []
|
| 33 |
+
for idx, result in enumerate(search_results, 1):
|
| 34 |
+
# Extract available fields with fallbacks for missing data
|
| 35 |
+
title = result.get('title', 'No title available')
|
| 36 |
+
snippet = result.get('body', result.get('snippet', 'No description available'))
|
| 37 |
+
source = result.get('source', 'Unknown source')
|
| 38 |
+
url = result.get('url', result.get('link', 'No link available'))
|
| 39 |
+
date = result.get('date', 'Date not available')
|
| 40 |
+
|
| 41 |
+
# Format each result with available information
|
| 42 |
+
formatted_results.append(
|
| 43 |
+
f"{idx}. Title: {title}\n"
|
| 44 |
+
f" Date: {date}\n"
|
| 45 |
+
f" Source: {source}\n"
|
| 46 |
+
f" Summary: {snippet}\n"
|
| 47 |
+
f" URL: {url}\n"
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
return "\n".join(formatted_results)
|
| 51 |
+
|
| 52 |
+
except Exception as e:
|
| 53 |
+
# Provide detailed error information for debugging
|
| 54 |
+
error_msg = f"Search error: {str(e)}\nTry again with a different search term or check your internet connection."
|
| 55 |
+
print(f"DuckDuckGo search error: {str(e)}") # For logging
|
| 56 |
+
return error_msg
|
| 57 |
|
| 58 |
class GroqLLM:
|
| 59 |
+
"""
|
| 60 |
+
LLM interface using Groq's LLama model.
|
| 61 |
+
Handles API communication and response processing.
|
| 62 |
+
"""
|
| 63 |
def __init__(self, model_name="llama-3.1-8B-Instant"):
|
| 64 |
self.client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
| 65 |
self.model_name = model_name
|
| 66 |
|
| 67 |
def __call__(self, prompt: Union[str, dict, List[Dict]]) -> str:
|
|
|
|
| 68 |
try:
|
| 69 |
+
# Convert prompt to string if it's a complex structure
|
| 70 |
+
prompt_str = str(prompt) if isinstance(prompt, (dict, list)) else prompt
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
+
# Make API call to Groq
|
| 73 |
completion = self.client.chat.completions.create(
|
| 74 |
model=self.model_name,
|
| 75 |
messages=[{
|
|
|
|
| 82 |
)
|
| 83 |
|
| 84 |
return completion.choices[0].message.content if completion.choices else "Error: No response generated"
|
|
|
|
| 85 |
except Exception as e:
|
| 86 |
error_msg = f"Error generating response: {str(e)}"
|
| 87 |
+
print(error_msg) # For logging
|
| 88 |
return error_msg
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
+
def create_analysis_prompt(topic: str, search_results: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
"""
|
| 92 |
+
Creates a detailed prompt for news analysis, structuring the request
|
| 93 |
+
to get comprehensive and well-organized results from the LLM.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
"""
|
| 95 |
+
return f"""Analyze the following news information about {topic}.
|
| 96 |
+
Search Results: {search_results}
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
+
Please provide a comprehensive analysis including:
|
| 99 |
+
1. Key Points Summary:
|
| 100 |
+
- Main events and developments
|
| 101 |
+
- Critical updates and changes
|
| 102 |
|
| 103 |
+
2. Stakeholder Analysis:
|
| 104 |
+
- Primary parties involved
|
| 105 |
+
- Their roles and positions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
+
3. Impact Assessment:
|
| 108 |
+
- Immediate implications
|
| 109 |
+
- Potential long-term effects
|
| 110 |
+
- Broader context and significance
|
| 111 |
|
| 112 |
+
4. Multiple Perspectives:
|
| 113 |
+
- Different viewpoints on the issue
|
| 114 |
+
- Areas of agreement and contention
|
| 115 |
|
| 116 |
+
5. Fact Check & Reliability:
|
| 117 |
+
- Verification of major claims
|
| 118 |
+
- Consistency across sources
|
| 119 |
+
- Source credibility assessment
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
+
Please format the analysis in a clear, journalistic style with section headers."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
+
def log_agent_activity(prompt: str, result: str, agent_name: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
"""
|
| 125 |
+
Creates an expandable log of agent activities in the Streamlit interface
|
| 126 |
+
for transparency and debugging purposes.
|
| 127 |
+
"""
|
| 128 |
+
with st.expander("View Agent Activity Log"):
|
| 129 |
+
st.write(f"### Agent Activity ({agent_name}):")
|
| 130 |
+
st.write("**Input Prompt:**")
|
| 131 |
+
st.code(prompt, language="text")
|
| 132 |
+
st.write("**Analysis Output:**")
|
| 133 |
+
st.code(result, language="text")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
+
# Initialize Streamlit app
|
| 136 |
+
st.set_page_config(page_title="News Analysis Tool", layout="wide")
|
| 137 |
+
|
| 138 |
+
# Title and description
|
| 139 |
+
st.title("π AI News Analysis Tool")
|
| 140 |
+
st.write("""
|
| 141 |
+
This tool combines the power of Groq's LLama 3.1 8B Instant model with DuckDuckGo
|
| 142 |
+
search to provide in-depth news analysis. Get comprehensive insights and multiple
|
| 143 |
+
perspectives on any news topic.
|
| 144 |
+
""")
|
| 145 |
+
|
| 146 |
+
# Initialize the components
|
| 147 |
+
try:
|
| 148 |
+
# Initialize LLM and search tool
|
| 149 |
+
llm = GroqLLM()
|
| 150 |
+
search_tool = DuckDuckGoSearch()
|
| 151 |
+
|
| 152 |
+
# Input section
|
| 153 |
+
news_topic = st.text_input(
|
| 154 |
+
"Enter News Topic or Query:",
|
| 155 |
+
placeholder="E.g., Recent developments in renewable energy"
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
# Analysis options
|
| 159 |
+
col1, col2 = st.columns(2)
|
| 160 |
+
with col1:
|
| 161 |
+
search_depth = st.slider(
|
| 162 |
+
"Search Depth (number of results)",
|
| 163 |
+
min_value=3,
|
| 164 |
+
max_value=10,
|
| 165 |
+
value=5
|
| 166 |
+
)
|
| 167 |
+
with col2:
|
| 168 |
+
analysis_type = st.selectbox(
|
| 169 |
+
"Analysis Type",
|
| 170 |
+
["Comprehensive", "Quick Summary", "Technical", "Simplified"]
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
# Generate analysis button
|
| 174 |
+
if st.button("Analyze News"):
|
| 175 |
+
if news_topic:
|
| 176 |
+
with st.spinner("Gathering information and analyzing..."):
|
| 177 |
+
try:
|
| 178 |
+
# Show search progress
|
| 179 |
+
search_placeholder = st.empty()
|
| 180 |
+
search_placeholder.info("Searching for recent news...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
+
# Perform search
|
| 183 |
+
search_results = search_tool(
|
| 184 |
+
f"Latest news about {news_topic} last 7 days",
|
| 185 |
+
max_results=search_depth
|
|
|
|
| 186 |
)
|
|
|
|
| 187 |
|
| 188 |
+
if not search_results.startswith(("Search error", "No results")):
|
| 189 |
+
# Update progress
|
| 190 |
+
search_placeholder.info("Analyzing search results...")
|
| 191 |
+
|
| 192 |
+
# Create analysis prompt
|
| 193 |
+
analysis_prompt = create_analysis_prompt(news_topic, search_results)
|
| 194 |
+
|
| 195 |
+
# Get analysis from LLM
|
| 196 |
+
analysis_result = llm(analysis_prompt)
|
| 197 |
+
|
| 198 |
+
# Clear progress messages
|
| 199 |
+
search_placeholder.empty()
|
| 200 |
+
|
| 201 |
+
# Display results
|
| 202 |
+
st.subheader("π Analysis Results")
|
| 203 |
+
st.markdown(analysis_result)
|
| 204 |
|
| 205 |
+
# Log the activity
|
| 206 |
+
log_agent_activity(
|
| 207 |
+
analysis_prompt,
|
| 208 |
+
analysis_result,
|
| 209 |
+
"News Analysis Agent"
|
| 210 |
+
)
|
| 211 |
+
else:
|
| 212 |
+
search_placeholder.empty()
|
| 213 |
+
st.error(search_results)
|
| 214 |
+
|
| 215 |
+
except Exception as e:
|
| 216 |
+
st.error(f"An error occurred during analysis: {str(e)}")
|
| 217 |
+
else:
|
| 218 |
+
st.warning("Please enter a news topic to analyze.")
|
| 219 |
+
|
| 220 |
+
# Add helpful tips
|
| 221 |
+
with st.expander("π‘ Tips for Better Results"):
|
| 222 |
+
st.write("""
|
| 223 |
+
- Be specific with your topic for more focused analysis
|
| 224 |
+
- Use keywords related to recent events for timely information
|
| 225 |
+
- Consider including timeframes in your query
|
| 226 |
+
- Try different analysis types for various perspectives
|
| 227 |
+
- For complex topics, start with a broader search and then narrow down
|
| 228 |
+
""")
|
| 229 |
+
|
| 230 |
+
except Exception as e:
|
| 231 |
+
st.error(f"""
|
| 232 |
+
Failed to initialize the application: {str(e)}
|
| 233 |
+
|
| 234 |
+
Please ensure:
|
| 235 |
+
1. Your GROQ_API_KEY is properly set in environment variables
|
| 236 |
+
2. All required packages are installed:
|
| 237 |
+
- pip install streamlit groq duckduckgo-search
|
| 238 |
+
3. You have internet connectivity for DuckDuckGo searches
|
| 239 |
+
""")
|
| 240 |
|
| 241 |
+
# Footer
|
| 242 |
+
st.markdown("---")
|
| 243 |
+
st.caption(
|
| 244 |
+
"Powered by Groq LLama 3.1 8B Instant, DuckDuckGo, and Streamlit | "
|
| 245 |
+
"Created for news analysis and research purposes"
|
| 246 |
+
)
|