Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +884 -38
src/streamlit_app.py
CHANGED
@@ -1,40 +1,886 @@
|
|
1 |
-
import altair as alt
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
""
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
18 |
-
|
19 |
-
indices = np.linspace(0, 1, num_points)
|
20 |
-
theta = 2 * np.pi * num_turns * indices
|
21 |
-
radius = indices
|
22 |
-
|
23 |
-
x = radius * np.cos(theta)
|
24 |
-
y = radius * np.sin(theta)
|
25 |
-
|
26 |
-
df = pd.DataFrame({
|
27 |
-
"x": x,
|
28 |
-
"y": y,
|
29 |
-
"idx": indices,
|
30 |
-
"rand": np.random.randn(num_points),
|
31 |
-
})
|
32 |
-
|
33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
34 |
-
.mark_point(filled=True)
|
35 |
-
.encode(
|
36 |
-
x=alt.X("x", axis=None),
|
37 |
-
y=alt.Y("y", axis=None),
|
38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
40 |
-
))
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
from smolagents import CodeAgent, tool
|
5 |
+
from typing import Union, List, Dict, Optional
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import seaborn as sns
|
8 |
+
import os
|
9 |
+
from groq import Groq
|
10 |
+
from dataclasses import dataclass
|
11 |
+
import tempfile
|
12 |
+
import base64
|
13 |
+
import io
|
14 |
+
import plotly.express as px
|
15 |
+
import plotly.graph_objects as go
|
16 |
+
|
17 |
+
# Set page configuration
|
18 |
+
st.set_page_config(
|
19 |
+
page_title="Data Analysis Assistant",
|
20 |
+
page_icon="📊",
|
21 |
+
layout="wide",
|
22 |
+
initial_sidebar_state="expanded"
|
23 |
+
)
|
24 |
+
|
25 |
+
# Custom CSS for DeepMind-inspired styling
|
26 |
+
st.markdown("""
|
27 |
+
<style>
|
28 |
+
/* Main font and colors */
|
29 |
+
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&display=swap');
|
30 |
+
|
31 |
+
html, body, [class*="css"] {
|
32 |
+
font-family: 'Inter', sans-serif;
|
33 |
+
}
|
34 |
+
|
35 |
+
/* Primary colors */
|
36 |
+
:root {
|
37 |
+
--primary-color: #1a73e8;
|
38 |
+
--secondary-color: #5f6368;
|
39 |
+
--accent-color: #34a853;
|
40 |
+
--background-color: #f8f9fa;
|
41 |
+
--card-background: #ffffff;
|
42 |
+
--border-color: #dadce0;
|
43 |
+
}
|
44 |
+
|
45 |
+
/* Header styling */
|
46 |
+
.main-header {
|
47 |
+
color: #202124;
|
48 |
+
font-weight: 700;
|
49 |
+
font-size: 2.5rem;
|
50 |
+
margin-bottom: 1rem;
|
51 |
+
background: linear-gradient(90deg, #1a73e8, #8ab4f8);
|
52 |
+
-webkit-background-clip: text;
|
53 |
+
-webkit-text-fill-color: transparent;
|
54 |
+
text-align: center;
|
55 |
+
}
|
56 |
+
|
57 |
+
.sub-header {
|
58 |
+
color: #5f6368;
|
59 |
+
font-weight: 500;
|
60 |
+
font-size: 1.5rem;
|
61 |
+
margin-bottom: 1.5rem;
|
62 |
+
text-align: center;
|
63 |
+
}
|
64 |
+
|
65 |
+
/* Card styling */
|
66 |
+
.card {
|
67 |
+
background-color: var(--card-background);
|
68 |
+
border-radius: 8px;
|
69 |
+
padding: 20px;
|
70 |
+
box-shadow: 0 1px 2px rgba(0, 0, 0, 0.1);
|
71 |
+
margin-bottom: 20px;
|
72 |
+
border: 1px solid var(--border-color);
|
73 |
+
}
|
74 |
+
|
75 |
+
.card-title {
|
76 |
+
font-weight: 600;
|
77 |
+
font-size: 1.2rem;
|
78 |
+
margin-bottom: 10px;
|
79 |
+
color: #202124;
|
80 |
+
}
|
81 |
+
|
82 |
+
/* Button styling */
|
83 |
+
.stButton > button {
|
84 |
+
background-color: var(--primary-color);
|
85 |
+
color: white;
|
86 |
+
border-radius: 4px;
|
87 |
+
padding: 0.5rem 1rem;
|
88 |
+
font-weight: 500;
|
89 |
+
border: none;
|
90 |
+
transition: all 0.3s;
|
91 |
+
}
|
92 |
+
|
93 |
+
.stButton > button:hover {
|
94 |
+
background-color: #1967d2;
|
95 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
|
96 |
+
}
|
97 |
+
|
98 |
+
/* Input fields */
|
99 |
+
.stTextInput > div > div > input {
|
100 |
+
border-radius: 4px;
|
101 |
+
border: 1px solid var(--border-color);
|
102 |
+
padding: 0.5rem;
|
103 |
+
}
|
104 |
+
|
105 |
+
/* Selectbox */
|
106 |
+
.stSelectbox > div > div > div {
|
107 |
+
border-radius: 4px;
|
108 |
+
border: 1px solid var(--border-color);
|
109 |
+
}
|
110 |
+
|
111 |
+
/* Spinner */
|
112 |
+
.stSpinner > div > div > div {
|
113 |
+
border-top-color: var(--primary-color) !important;
|
114 |
+
}
|
115 |
+
|
116 |
+
/* Success message */
|
117 |
+
.stSuccess {
|
118 |
+
background-color: #e6f4ea;
|
119 |
+
color: #34a853;
|
120 |
+
border: none;
|
121 |
+
border-radius: 4px;
|
122 |
+
}
|
123 |
+
|
124 |
+
/* Error message */
|
125 |
+
.stError {
|
126 |
+
background-color: #fce8e6;
|
127 |
+
color: #ea4335;
|
128 |
+
border: none;
|
129 |
+
border-radius: 4px;
|
130 |
+
}
|
131 |
+
|
132 |
+
/* File uploader */
|
133 |
+
.stFileUploader > div > button {
|
134 |
+
background-color: var(--primary-color);
|
135 |
+
color: white;
|
136 |
+
}
|
137 |
+
|
138 |
+
.stFileUploader > div {
|
139 |
+
border: 2px dashed var(--border-color);
|
140 |
+
border-radius: 8px;
|
141 |
+
padding: 20px;
|
142 |
+
}
|
143 |
+
|
144 |
+
/* Dataframe styling */
|
145 |
+
.dataframe-container {
|
146 |
+
border-radius: 8px;
|
147 |
+
overflow: hidden;
|
148 |
+
border: 1px solid var(--border-color);
|
149 |
+
}
|
150 |
+
|
151 |
+
/* Tabs styling */
|
152 |
+
.stTabs [data-baseweb="tab-list"] {
|
153 |
+
gap: 2px;
|
154 |
+
}
|
155 |
+
|
156 |
+
.stTabs [data-baseweb="tab"] {
|
157 |
+
background-color: transparent;
|
158 |
+
border-radius: 4px 4px 0 0;
|
159 |
+
border: none;
|
160 |
+
color: var(--secondary-color);
|
161 |
+
font-weight: 500;
|
162 |
+
}
|
163 |
+
|
164 |
+
.stTabs [aria-selected="true"] {
|
165 |
+
background-color: white;
|
166 |
+
color: var(--primary-color);
|
167 |
+
border-bottom: 2px solid var(--primary-color);
|
168 |
+
}
|
169 |
+
|
170 |
+
/* Animation for results */
|
171 |
+
@keyframes fadeIn {
|
172 |
+
from { opacity: 0; transform: translateY(10px); }
|
173 |
+
to { opacity: 1; transform: translateY(0); }
|
174 |
+
}
|
175 |
+
|
176 |
+
.fade-in {
|
177 |
+
animation: fadeIn 0.5s ease-out forwards;
|
178 |
+
}
|
179 |
+
|
180 |
+
/* Metrics styling */
|
181 |
+
.metric-card {
|
182 |
+
background-color: white;
|
183 |
+
border-radius: 8px;
|
184 |
+
padding: 15px;
|
185 |
+
box-shadow: 0 1px 3px rgba(0,0,0,0.1);
|
186 |
+
text-align: center;
|
187 |
+
border: 1px solid var(--border-color);
|
188 |
+
}
|
189 |
+
|
190 |
+
.metric-value {
|
191 |
+
font-size: 1.8rem;
|
192 |
+
font-weight: 700;
|
193 |
+
color: var(--primary-color);
|
194 |
+
}
|
195 |
+
|
196 |
+
.metric-label {
|
197 |
+
font-size: 0.9rem;
|
198 |
+
color: var(--secondary-color);
|
199 |
+
margin-top: 5px;
|
200 |
+
}
|
201 |
+
|
202 |
+
/* Sidebar styling */
|
203 |
+
.css-1d391kg {
|
204 |
+
background-color: white;
|
205 |
+
}
|
206 |
+
|
207 |
+
/* Logo display */
|
208 |
+
.logo-container {
|
209 |
+
display: flex;
|
210 |
+
justify-content: center;
|
211 |
+
margin-bottom: 20px;
|
212 |
+
}
|
213 |
+
|
214 |
+
.logo {
|
215 |
+
max-width: 180px;
|
216 |
+
}
|
217 |
+
</style>
|
218 |
+
""", unsafe_allow_html=True)
|
219 |
+
|
220 |
+
class GroqLLM:
|
221 |
+
"""Compatible LLM interface for smolagents CodeAgent"""
|
222 |
+
def __init__(self, model_name="llama-3.1-8B-Instant"):
|
223 |
+
self.client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
224 |
+
self.model_name = model_name
|
225 |
+
|
226 |
+
def __call__(self, prompt: Union[str, dict, List[Dict]]) -> str:
|
227 |
+
"""Make the class callable as required by smolagents"""
|
228 |
+
try:
|
229 |
+
# Handle different prompt formats
|
230 |
+
if isinstance(prompt, (dict, list)):
|
231 |
+
prompt_str = str(prompt)
|
232 |
+
else:
|
233 |
+
prompt_str = str(prompt)
|
234 |
+
|
235 |
+
# Create a properly formatted message
|
236 |
+
completion = self.client.chat.completions.create(
|
237 |
+
model=self.model_name,
|
238 |
+
messages=[{
|
239 |
+
"role": "user",
|
240 |
+
"content": prompt_str
|
241 |
+
}],
|
242 |
+
temperature=0.7,
|
243 |
+
max_tokens=1024,
|
244 |
+
stream=False
|
245 |
+
)
|
246 |
+
|
247 |
+
return completion.choices[0].message.content if completion.choices else "Error: No response generated"
|
248 |
+
|
249 |
+
except Exception as e:
|
250 |
+
error_msg = f"Error generating response: {str(e)}"
|
251 |
+
print(error_msg)
|
252 |
+
return error_msg
|
253 |
+
|
254 |
+
class DataAnalysisAgent(CodeAgent):
|
255 |
+
"""Extended CodeAgent with dataset awareness"""
|
256 |
+
def __init__(self, dataset: pd.DataFrame, *args, **kwargs):
|
257 |
+
super().__init__(*args, **kwargs)
|
258 |
+
self._dataset = dataset
|
259 |
+
|
260 |
+
@property
|
261 |
+
def dataset(self) -> pd.DataFrame:
|
262 |
+
"""Access the stored dataset"""
|
263 |
+
return self._dataset
|
264 |
+
|
265 |
+
def run(self, prompt: str) -> str:
|
266 |
+
"""Override run method to include dataset context"""
|
267 |
+
dataset_info = f"""
|
268 |
+
Dataset Shape: {self.dataset.shape}
|
269 |
+
Columns: {', '.join(self.dataset.columns)}
|
270 |
+
Data Types: {self.dataset.dtypes.to_dict()}
|
271 |
+
"""
|
272 |
+
enhanced_prompt = f"""
|
273 |
+
Analyze the following dataset:
|
274 |
+
{dataset_info}
|
275 |
+
|
276 |
+
Task: {prompt}
|
277 |
+
|
278 |
+
Use the provided tools to analyze this specific dataset and return detailed results.
|
279 |
+
"""
|
280 |
+
return super().run(enhanced_prompt)
|
281 |
+
|
282 |
+
@tool
|
283 |
+
def analyze_basic_stats(data: pd.DataFrame) -> str:
|
284 |
+
"""Calculate basic statistical measures for numerical columns in the dataset."""
|
285 |
+
# Access dataset from agent if no data provided
|
286 |
+
if data is None:
|
287 |
+
data = tool.agent.dataset
|
288 |
+
|
289 |
+
stats = {}
|
290 |
+
numeric_cols = data.select_dtypes(include=[np.number]).columns
|
291 |
+
|
292 |
+
for col in numeric_cols:
|
293 |
+
stats[col] = {
|
294 |
+
'mean': float(data[col].mean()),
|
295 |
+
'median': float(data[col].median()),
|
296 |
+
'std': float(data[col].std()),
|
297 |
+
'skew': float(data[col].skew()),
|
298 |
+
'missing': int(data[col].isnull().sum())
|
299 |
+
}
|
300 |
+
|
301 |
+
return str(stats)
|
302 |
+
|
303 |
+
@tool
|
304 |
+
def generate_correlation_matrix(data: pd.DataFrame) -> str:
|
305 |
+
"""Generate a visual correlation matrix for numerical columns in the dataset."""
|
306 |
+
# Access dataset from agent if no data provided
|
307 |
+
if data is None:
|
308 |
+
data = tool.agent.dataset
|
309 |
+
|
310 |
+
numeric_data = data.select_dtypes(include=[np.number])
|
311 |
+
|
312 |
+
# Using a modern Plotly heatmap instead of matplotlib
|
313 |
+
fig = px.imshow(
|
314 |
+
numeric_data.corr(),
|
315 |
+
text_auto=True,
|
316 |
+
aspect="auto",
|
317 |
+
color_continuous_scale="Blues",
|
318 |
+
title="Feature Correlation Matrix"
|
319 |
+
)
|
320 |
+
|
321 |
+
fig.update_layout(
|
322 |
+
height=600,
|
323 |
+
width=800,
|
324 |
+
font=dict(family="Inter, sans-serif"),
|
325 |
+
plot_bgcolor="white",
|
326 |
+
title_font=dict(size=20, color="#202124", family="Inter, sans-serif"),
|
327 |
+
margin=dict(l=40, r=40, t=60, b=40),
|
328 |
+
)
|
329 |
+
|
330 |
+
# Convert to HTML for display
|
331 |
+
fig_html = fig.to_html(full_html=False, include_plotlyjs='cdn')
|
332 |
+
return fig_html
|
333 |
+
|
334 |
+
@tool
|
335 |
+
def analyze_categorical_columns(data: pd.DataFrame) -> str:
|
336 |
+
"""Analyze categorical columns in the dataset for distribution and frequencies."""
|
337 |
+
# Access dataset from agent if no data provided
|
338 |
+
if data is None:
|
339 |
+
data = tool.agent.dataset
|
340 |
+
|
341 |
+
categorical_cols = data.select_dtypes(include=['object', 'category']).columns
|
342 |
+
analysis = {}
|
343 |
+
|
344 |
+
for col in categorical_cols:
|
345 |
+
analysis[col] = {
|
346 |
+
'unique_values': int(data[col].nunique()),
|
347 |
+
'top_categories': data[col].value_counts().head(5).to_dict(),
|
348 |
+
'missing': int(data[col].isnull().sum())
|
349 |
+
}
|
350 |
+
|
351 |
+
# Create an HTML visualization of categorical data
|
352 |
+
html_content = "<div style='font-family: Inter, sans-serif;'>"
|
353 |
+
|
354 |
+
for col, stats in analysis.items():
|
355 |
+
html_content += f"<div class='card' style='margin-bottom: 20px; padding: 15px; border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1); background-color: white;'>"
|
356 |
+
html_content += f"<h3 style='color: #202124; margin-bottom: 10px;'>{col}</h3>"
|
357 |
+
html_content += f"<p><b>Unique Values:</b> {stats['unique_values']}</p>"
|
358 |
+
html_content += f"<p><b>Missing Values:</b> {stats['missing']}</p>"
|
359 |
+
|
360 |
+
# Add bar chart for top categories
|
361 |
+
if stats['top_categories']:
|
362 |
+
categories = list(stats['top_categories'].keys())
|
363 |
+
values = list(stats['top_categories'].values())
|
364 |
+
|
365 |
+
fig = go.Figure()
|
366 |
+
fig.add_trace(go.Bar(
|
367 |
+
x=categories,
|
368 |
+
y=values,
|
369 |
+
marker_color='#1a73e8',
|
370 |
+
hoverinfo='x+y'
|
371 |
+
))
|
372 |
+
|
373 |
+
fig.update_layout(
|
374 |
+
title=f"Top Categories for {col}",
|
375 |
+
xaxis_title="Category",
|
376 |
+
yaxis_title="Count",
|
377 |
+
font=dict(family="Inter, sans-serif"),
|
378 |
+
height=350,
|
379 |
+
margin=dict(l=40, r=40, t=60, b=80),
|
380 |
+
xaxis=dict(tickangle=-45)
|
381 |
+
)
|
382 |
+
|
383 |
+
html_content += fig.to_html(full_html=False, include_plotlyjs='cdn')
|
384 |
+
|
385 |
+
html_content += "</div>"
|
386 |
+
|
387 |
+
html_content += "</div>"
|
388 |
+
return html_content
|
389 |
+
|
390 |
+
@tool
|
391 |
+
def suggest_features(data: pd.DataFrame) -> str:
|
392 |
+
"""Suggest potential feature engineering steps based on data characteristics."""
|
393 |
+
# Access dataset from agent if no data provided
|
394 |
+
if data is None:
|
395 |
+
data = tool.agent.dataset
|
396 |
+
|
397 |
+
suggestions = []
|
398 |
+
numeric_cols = data.select_dtypes(include=[np.number]).columns
|
399 |
+
categorical_cols = data.select_dtypes(include=['object', 'category']).columns
|
400 |
+
|
401 |
+
if len(numeric_cols) >= 2:
|
402 |
+
suggestions.append("Consider creating interaction terms between numerical features")
|
403 |
+
|
404 |
+
if len(categorical_cols) > 0:
|
405 |
+
suggestions.append("Consider one-hot encoding for categorical variables")
|
406 |
+
|
407 |
+
for col in numeric_cols:
|
408 |
+
if data[col].skew() > 1 or data[col].skew() < -1:
|
409 |
+
suggestions.append(f"Consider log transformation for {col} due to skewness")
|
410 |
+
|
411 |
+
# Format as HTML for better display
|
412 |
+
html_content = """
|
413 |
+
<div style='font-family: Inter, sans-serif; background-color: #f8f9fa; padding: 20px; border-radius: 8px;'>
|
414 |
+
<h3 style='color: #202124; margin-bottom: 15px;'>Feature Engineering Suggestions</h3>
|
415 |
+
<ul style='list-style-type: none; padding-left: 0;'>
|
416 |
+
"""
|
417 |
+
|
418 |
+
for suggestion in suggestions:
|
419 |
+
html_content += f"""
|
420 |
+
<li style='margin-bottom: 10px; padding: 12px; background-color: white;
|
421 |
+
border-left: 4px solid #1a73e8; border-radius: 4px; box-shadow: 0 1px 2px rgba(0,0,0,0.1);'>
|
422 |
+
<div style='display: flex; align-items: center;'>
|
423 |
+
<span style='color: #1a73e8; font-size: 18px; margin-right: 10px;'>✓</span>
|
424 |
+
<span>{suggestion}</span>
|
425 |
+
</div>
|
426 |
+
</li>
|
427 |
+
"""
|
428 |
+
|
429 |
+
if not suggestions:
|
430 |
+
html_content += """
|
431 |
+
<li style='margin-bottom: 10px; padding: 12px; background-color: white;
|
432 |
+
border-left: 4px solid #fbbc04; border-radius: 4px; box-shadow: 0 1px 2px rgba(0,0,0,0.1);'>
|
433 |
+
<div style='display: flex; align-items: center;'>
|
434 |
+
<span style='color: #fbbc04; font-size: 18px; margin-right: 10px;'>!</span>
|
435 |
+
<span>No specific feature engineering suggestions found for this dataset.</span>
|
436 |
+
</div>
|
437 |
+
</li>
|
438 |
+
"""
|
439 |
+
|
440 |
+
html_content += """
|
441 |
+
</ul>
|
442 |
+
</div>
|
443 |
+
"""
|
444 |
+
|
445 |
+
return html_content
|
446 |
+
|
447 |
+
@tool
|
448 |
+
def visualize_distributions(data: pd.DataFrame) -> str:
|
449 |
+
"""Create visualizations of numerical column distributions."""
|
450 |
+
# Access dataset from agent if no data provided
|
451 |
+
if data is None:
|
452 |
+
data = tool.agent.dataset
|
453 |
+
|
454 |
+
numeric_cols = data.select_dtypes(include=[np.number]).columns
|
455 |
+
|
456 |
+
if len(numeric_cols) == 0:
|
457 |
+
return "No numerical columns found in the dataset."
|
458 |
+
|
459 |
+
# Create HTML content with visualizations
|
460 |
+
html_content = "<div style='font-family: Inter, sans-serif;'>"
|
461 |
+
|
462 |
+
# Create a grid of histograms using plotly
|
463 |
+
fig = make_subplots(rows=len(numeric_cols), cols=1,
|
464 |
+
subplot_titles=numeric_cols,
|
465 |
+
vertical_spacing=0.05)
|
466 |
+
|
467 |
+
for i, col in enumerate(numeric_cols):
|
468 |
+
fig.add_trace(
|
469 |
+
go.Histogram(
|
470 |
+
x=data[col].dropna(),
|
471 |
+
name=col,
|
472 |
+
marker_color='#1a73e8',
|
473 |
+
opacity=0.7
|
474 |
+
),
|
475 |
+
row=i+1, col=1
|
476 |
+
)
|
477 |
+
|
478 |
+
fig.update_layout(
|
479 |
+
height=300 * len(numeric_cols),
|
480 |
+
width=800,
|
481 |
+
title_text="Distribution of Numerical Features",
|
482 |
+
showlegend=False,
|
483 |
+
font=dict(family="Inter, sans-serif"),
|
484 |
+
margin=dict(l=40, r=40, t=40, b=20),
|
485 |
+
)
|
486 |
+
|
487 |
+
html_content += fig.to_html(full_html=False, include_plotlyjs='cdn')
|
488 |
+
html_content += "</div>"
|
489 |
+
|
490 |
+
return html_content
|
491 |
+
|
492 |
+
def generate_deepmind_logo():
|
493 |
+
"""Generate a placeholder logo similar to DeepMind's style."""
|
494 |
+
fig = go.Figure()
|
495 |
+
|
496 |
+
# Create simple geometric shapes for logo
|
497 |
+
fig.add_shape(
|
498 |
+
type="circle",
|
499 |
+
x0=0.3, y0=0.3, x1=0.7, y1=0.7,
|
500 |
+
line=dict(color="#1a73e8", width=3),
|
501 |
+
fillcolor="rgba(26, 115, 232, 0.2)",
|
502 |
+
)
|
503 |
+
|
504 |
+
fig.add_shape(
|
505 |
+
type="circle",
|
506 |
+
x0=0.4, y0=0.4, x1=0.6, y1=0.6,
|
507 |
+
line=dict(color="#1a73e8", width=2),
|
508 |
+
fillcolor="rgba(26, 115, 232, 0.4)",
|
509 |
+
)
|
510 |
+
|
511 |
+
fig.update_layout(
|
512 |
+
width=180,
|
513 |
+
height=60,
|
514 |
+
paper_bgcolor='rgba(0,0,0,0)',
|
515 |
+
plot_bgcolor='rgba(0,0,0,0)',
|
516 |
+
margin=dict(l=0, r=0, t=0, b=0),
|
517 |
+
showlegend=False,
|
518 |
+
xaxis=dict(showgrid=False, zeroline=False, visible=False),
|
519 |
+
yaxis=dict(showgrid=False, zeroline=False, visible=False),
|
520 |
+
)
|
521 |
+
|
522 |
+
return fig.to_html(full_html=False, include_plotlyjs='cdn')
|
523 |
+
|
524 |
+
def main():
|
525 |
+
# Logo and header
|
526 |
+
st.markdown("""
|
527 |
+
<div class="logo-container">
|
528 |
+
<div class="logo">
|
529 |
+
<svg width="180" height="60" viewBox="0 0 180 60" fill="none" xmlns="http://www.w3.org/2000/svg">
|
530 |
+
<circle cx="30" cy="30" r="20" fill="#1a73e8" opacity="0.2" stroke="#1a73e8" stroke-width="2"/>
|
531 |
+
<circle cx="30" cy="30" r="10" fill="#1a73e8" opacity="0.4" stroke="#1a73e8" stroke-width="1.5"/>
|
532 |
+
<text x="60" y="35" font-family="Inter, sans-serif" font-size="18" font-weight="700" fill="#202124">Data Analysis</text>
|
533 |
+
</svg>
|
534 |
+
</div>
|
535 |
+
</div>
|
536 |
+
<h1 class="main-header">Data Analysis Assistant</h1>
|
537 |
+
<p class="sub-header">Upload your dataset and get intelligent insights with AI-powered analysis</p>
|
538 |
+
""", unsafe_allow_html=True)
|
539 |
+
|
540 |
+
# Initialize session state
|
541 |
+
if 'data' not in st.session_state:
|
542 |
+
st.session_state['data'] = None
|
543 |
+
if 'agent' not in st.session_state:
|
544 |
+
st.session_state['agent'] = None
|
545 |
+
if 'analysis_results' not in st.session_state:
|
546 |
+
st.session_state['analysis_results'] = None
|
547 |
+
|
548 |
+
# Create a two-column layout
|
549 |
+
col1, col2 = st.columns([1, 3])
|
550 |
+
|
551 |
+
with col1:
|
552 |
+
st.markdown('<div class="card">', unsafe_allow_html=True)
|
553 |
+
st.markdown('<div class="card-title">Upload Dataset</div>', unsafe_allow_html=True)
|
554 |
+
|
555 |
+
# File uploader with custom styling
|
556 |
+
uploaded_file = st.file_uploader("", type="csv")
|
557 |
+
|
558 |
+
if uploaded_file is not None:
|
559 |
+
try:
|
560 |
+
with st.spinner('Processing dataset...'):
|
561 |
+
# Load the dataset
|
562 |
+
data = pd.read_csv(uploaded_file)
|
563 |
+
st.session_state['data'] = data
|
564 |
+
|
565 |
+
# Initialize the agent with the dataset
|
566 |
+
st.session_state['agent'] = DataAnalysisAgent(
|
567 |
+
dataset=data,
|
568 |
+
tools=[analyze_basic_stats, generate_correlation_matrix,
|
569 |
+
analyze_categorical_columns, suggest_features,
|
570 |
+
visualize_distributions],
|
571 |
+
model=GroqLLM(),
|
572 |
+
additional_authorized_imports=["pandas", "numpy", "matplotlib",
|
573 |
+
"seaborn", "plotly"]
|
574 |
+
)
|
575 |
+
|
576 |
+
# Display dataset statistics
|
577 |
+
st.markdown("""
|
578 |
+
<div style="background-color: #e6f4ea; padding: 10px; border-radius: 4px; margin-top: 10px;">
|
579 |
+
<div style="display: flex; align-items: center;">
|
580 |
+
<span style="color: #34a853; font-size: 20px; margin-right: 10px;">✓</span>
|
581 |
+
<span style="color: #34a853; font-weight: 500;">Dataset loaded successfully</span>
|
582 |
+
</div>
|
583 |
+
</div>
|
584 |
+
""", unsafe_allow_html=True)
|
585 |
+
|
586 |
+
col1, col2 = st.columns(2)
|
587 |
+
with col1:
|
588 |
+
st.markdown(f"""
|
589 |
+
<div class="metric-card">
|
590 |
+
<div class="metric-value">{data.shape[0]:,}</div>
|
591 |
+
<div class="metric-label">Rows</div>
|
592 |
+
</div>
|
593 |
+
""", unsafe_allow_html=True)
|
594 |
+
|
595 |
+
with col2:
|
596 |
+
st.markdown(f"""
|
597 |
+
<div class="metric-card">
|
598 |
+
<div class="metric-value">{data.shape[1]}</div>
|
599 |
+
<div class="metric-label">Columns</div>
|
600 |
+
</div>
|
601 |
+
""", unsafe_allow_html=True)
|
602 |
+
|
603 |
+
except Exception as e:
|
604 |
+
st.error(f"Error: {str(e)}")
|
605 |
+
|
606 |
+
# Analysis type selection
|
607 |
+
if st.session_state['data'] is not None:
|
608 |
+
st.markdown('<div class="card-title" style="margin-top: 20px;">Analysis Tools</div>', unsafe_allow_html=True)
|
609 |
+
|
610 |
+
analysis_type = st.selectbox(
|
611 |
+
"Select analysis type",
|
612 |
+
["Data Overview", "Basic Statistics", "Feature Correlations",
|
613 |
+
"Categorical Analysis", "Feature Engineering", "Data Distributions",
|
614 |
+
"Ask Your Own Question"]
|
615 |
+
)
|
616 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
617 |
+
|
618 |
+
# Main content area
|
619 |
+
with col2:
|
620 |
+
if st.session_state['data'] is not None:
|
621 |
+
# Data preview tab
|
622 |
+
st.markdown('<div class="card">', unsafe_allow_html=True)
|
623 |
+
st.markdown('<div class="card-title">Data Preview</div>', unsafe_allow_html=True)
|
624 |
+
|
625 |
+
# Add tabs for different data views
|
626 |
+
data_tabs = st.tabs(["Data Sample", "Column Info", "Missing Values"])
|
627 |
+
|
628 |
+
with data_tabs[0]:
|
629 |
+
st.markdown('<div class="dataframe-container">', unsafe_allow_html=True)
|
630 |
+
st.dataframe(st.session_state['data'].head(10), use_container_width=True)
|
631 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
632 |
+
|
633 |
+
with data_tabs[1]:
|
634 |
+
col1, col2, col3 = st.columns(3)
|
635 |
+
with col1:
|
636 |
+
st.markdown("**Column Names**")
|
637 |
+
st.write(st.session_state['data'].columns.tolist())
|
638 |
+
with col2:
|
639 |
+
st.markdown("**Data Types**")
|
640 |
+
for col, dtype in st.session_state['data'].dtypes.items():
|
641 |
+
st.write(f"{col}: {dtype}")
|
642 |
+
with col3:
|
643 |
+
st.markdown("**Non-Null Count**")
|
644 |
+
for col, count in st.session_state['data'].count().items():
|
645 |
+
st.write(f"{col}: {count}/{len(st.session_state['data'])}")
|
646 |
+
|
647 |
+
with data_tabs[2]:
|
648 |
+
missing_data = st.session_state['data'].isnull().sum()
|
649 |
+
if missing_data.sum() > 0:
|
650 |
+
missing_df = pd.DataFrame({
|
651 |
+
'Column': missing_data.index,
|
652 |
+
'Missing Values': missing_data.values,
|
653 |
+
'Percentage': round(missing_data.values / len(st.session_state['data']) * 100, 2)
|
654 |
+
})
|
655 |
+
missing_df = missing_df[missing_df['Missing Values'] > 0].sort_values('Missing Values', ascending=False)
|
656 |
+
st.dataframe(missing_df, use_container_width=True)
|
657 |
+
|
658 |
+
# Add a visualization of missing values
|
659 |
+
fig = px.bar(
|
660 |
+
missing_df,
|
661 |
+
x='Column',
|
662 |
+
y='Percentage',
|
663 |
+
color='Percentage',
|
664 |
+
color_continuous_scale='Blues',
|
665 |
+
title='Missing Values by Column (%)'
|
666 |
+
)
|
667 |
+
fig.update_layout(
|
668 |
+
xaxis_title='',
|
669 |
+
yaxis_title='Missing Values (%)',
|
670 |
+
height=400
|
671 |
+
)
|
672 |
+
st.plotly_chart(fig, use_container_width=True)
|
673 |
+
else:
|
674 |
+
st.success("No missing values in the dataset!")
|
675 |
+
|
676 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
677 |
+
|
678 |
+
# Analysis results section
|
679 |
+
if analysis_type:
|
680 |
+
st.markdown('<div class="card">', unsafe_allow_html=True)
|
681 |
+
st.markdown(f'<div class="card-title">{analysis_type} Results</div>', unsafe_allow_html=True)
|
682 |
+
|
683 |
+
if analysis_type == "Data Overview":
|
684 |
+
col1, col2 = st.columns(2)
|
685 |
+
|
686 |
+
with col1:
|
687 |
+
st.markdown("### Dataset Summary")
|
688 |
+
st.dataframe(st.session_state['data'].describe(), use_container_width=True)
|
689 |
+
|
690 |
+
with col2:
|
691 |
+
st.markdown("### Data Profile")
|
692 |
+
numeric_count = len(st.session_state['data'].select_dtypes(include=[np.number]).columns)
|
693 |
+
categorical_count = len(st.session_state['data'].select_dtypes(include=['object', 'category']).columns)
|
694 |
+
|
695 |
+
# Create a pie chart for data types
|
696 |
+
fig = px.pie(
|
697 |
+
values=[numeric_count, categorical_count],
|
698 |
+
names=['Numeric', 'Categorical'],
|
699 |
+
color_discrete_sequence=['#1a73e8', '#34a853'],
|
700 |
+
hole=0.4
|
701 |
+
)
|
702 |
+
fig.update_layout(
|
703 |
+
title='Column Types',
|
704 |
+
font=dict(family="Inter, sans-serif"),
|
705 |
+
legend=dict(orientation="h", yanchor="bottom", y=-0.2, xanchor="center", x=0.5)
|
706 |
+
)
|
707 |
+
st.plotly_chart(fig, use_container_width=True)
|
708 |
+
|
709 |
+
elif analysis_type == "Basic Statistics":
|
710 |
+
with st.spinner('Analyzing basic statistics...'):
|
711 |
+
result = st.session_state['agent'].run(
|
712 |
+
"Use the analyze_basic_stats tool to analyze this dataset and "
|
713 |
+
"provide insights about the numerical distributions."
|
714 |
+
)
|
715 |
+
|
716 |
+
# Parse the string representation of the dictionary
|
717 |
+
try:
|
718 |
+
# Remove the literal 'str' prefix if present
|
719 |
+
if result.startswith("str("):
|
720 |
+
result = result[4:-1]
|
721 |
+
|
722 |
+
# Convert string to dict
|
723 |
+
import ast
|
724 |
+
stats_dict = ast.literal_eval(result)
|
725 |
+
|
726 |
+
# Display results in a more visual format
|
727 |
+
for col, stats in stats_dict.items():
|
728 |
+
st.markdown(f"### {col}")
|
729 |
+
|
730 |
+
# Create metrics in columns
|
731 |
+
col1, col2, col3, col4 = st.columns(4)
|
732 |
+
|
733 |
+
with col1:
|
734 |
+
st.metric("Mean", f"{stats['mean']:.2f}")
|
735 |
+
with col2:
|
736 |
+
st.metric("Median", f"{stats['median']:.2f}")
|
737 |
+
with col3:
|
738 |
+
st.metric("Std Dev", f"{stats['std']:.2f}")
|
739 |
+
with col4:
|
740 |
+
st.metric("Skewness", f"{stats['skew']:.2f}")
|
741 |
+
|
742 |
+
# Create a boxplot for this column
|
743 |
+
fig = px.box(
|
744 |
+
st.session_state['data'],
|
745 |
+
y=col,
|
746 |
+
points="all",
|
747 |
+
color_discrete_sequence=['#1a73e8'],
|
748 |
+
title=f"Distribution of {col}"
|
749 |
+
)
|
750 |
+
fig.update_layout(
|
751 |
+
height=300,
|
752 |
+
margin=dict(t=40, b=20, l=40, r=20),
|
753 |
+
font=dict(family="Inter, sans-serif")
|
754 |
+
)
|
755 |
+
st.plotly_chart(fig, use_container_width=True)
|
756 |
+
|
757 |
+
st.markdown("---")
|
758 |
+
|
759 |
+
except Exception as e:
|
760 |
+
st.write(result)
|
761 |
+
|
762 |
+
elif analysis_type == "Feature Correlations":
|
763 |
+
with st.spinner('Analyzing feature correlations...'):
|
764 |
+
result = st.session_state['agent'].run(
|
765 |
+
"Use the generate_correlation_matrix tool to analyze correlations "
|
766 |
+
"and explain any strong relationships found."
|
767 |
+
)
|
768 |
+
|
769 |
+
# If the result is HTML, display it directly
|
770 |
+
if isinstance(result, str) and ("<div" in result or "<html" in result):
|
771 |
+
st.components.v1.html(result, height=650)
|
772 |
+
else:
|
773 |
+
st.write(result)
|
774 |
+
|
775 |
+
elif analysis_type == "Categorical Analysis":
|
776 |
+
with st.spinner('Analyzing categorical data...'):
|
777 |
+
result = st.session_state['agent'].run(
|
778 |
+
"Use the analyze_categorical_columns tool to analyze categorical data "
|
779 |
+
"and provide insights about distributions and frequencies."
|
780 |
+
)
|
781 |
+
|
782 |
+
# Display the HTML content
|
783 |
+
if isinstance(result, str) and ("<div" in result or "<html" in result):
|
784 |
+
st.components.v1.html(result, height=700)
|
785 |
+
else:
|
786 |
+
st.write(result)
|
787 |
+
|
788 |
+
elif analysis_type == "Feature Engineering":
|
789 |
+
with st.spinner('Analyzing feature engineering possibilities...'):
|
790 |
+
result = st.session_state['agent'].run(
|
791 |
+
"Use the suggest_features tool to identify potential feature engineering "
|
792 |
+
"steps that could improve model performance."
|
793 |
+
)
|
794 |
+
|
795 |
+
# Display the HTML content
|
796 |
+
if isinstance(result, str) and ("<div" in result or "<html" in result):
|
797 |
+
st.components.v1.html(result, height=500)
|
798 |
+
else:
|
799 |
+
st.write(result)
|
800 |
+
|
801 |
+
elif analysis_type == "Data Distributions":
|
802 |
+
with st.spinner('Analyzing data distributions...'):
|
803 |
+
result = st.session_state['agent'].run(
|
804 |
+
"Use the visualize_distributions tool to analyze the numerical distributions "
|
805 |
+
"and identify any unusual patterns or outliers."
|
806 |
+
)
|
807 |
+
|
808 |
+
# Display the HTML content
|
809 |
+
if isinstance(result, str) and ("<div" in result or "<html" in result):
|
810 |
+
st.components.v1.html(result, height=800)
|
811 |
+
else:
|
812 |
+
st.write(result)
|
813 |
+
|
814 |
+
elif analysis_type == "Ask Your Own Question":
|
815 |
+
# Free-form question input
|
816 |
+
user_question = st.text_area("What would you like to know about this dataset?",
|
817 |
+
"What are the key insights from this dataset?")
|
818 |
+
|
819 |
+
if st.button("Analyze", key="custom_analysis"):
|
820 |
+
with st.spinner('Analyzing your question...'):
|
821 |
+
result = st.session_state['agent'].run(user_question)
|
822 |
+
st.session_state['analysis_results'] = result
|
823 |
+
|
824 |
+
if st.session_state['analysis_results']:
|
825 |
+
# Display the result
|
826 |
+
st.markdown("### Analysis Results")
|
827 |
+
|
828 |
+
# Check if result is HTML
|
829 |
+
if isinstance(st.session_state['analysis_results'], str) and ("<div" in st.session_state['analysis_results'] or "<html" in st.session_state['analysis_results']):
|
830 |
+
st.components.v1.html(st.session_state['analysis_results'], height=600)
|
831 |
+
else:
|
832 |
+
st.write(st.session_state['analysis_results'])
|
833 |
+
|
834 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
835 |
+
|
836 |
+
else:
|
837 |
+
# Display welcome message for users who haven't uploaded data yet
|
838 |
+
st.markdown("""
|
839 |
+
<div class="card fade-in">
|
840 |
+
<div style="text-align: center; padding: 50px 20px;">
|
841 |
+
<svg width="80" height="80" viewBox="0 0 80 80" fill="none" xmlns="http://www.w3.org/2000/svg" style="margin-bottom: 20px;">
|
842 |
+
<circle cx="40" cy="40" r="30" fill="#1a73e8" opacity="0.2" stroke="#1a73e8" stroke-width="2"/>
|
843 |
+
<circle cx="40" cy="40" r="15" fill="#1a73e8" opacity="0.4" stroke="#1a73e8" stroke-width="1.5"/>
|
844 |
+
</svg>
|
845 |
+
<h2 style="color: #202124; margin-bottom: 15px;">Welcome to Data Analysis Assistant</h2>
|
846 |
+
<p style="color: #5f6368; font-size: 16px; max-width: 600px; margin: 0 auto 25px auto;">
|
847 |
+
Upload a CSV file to get started with instant insights and intelligent analysis.
|
848 |
+
Our AI-powered assistant will help you understand your data like never before.
|
849 |
+
</p>
|
850 |
+
</div>
|
851 |
+
|
852 |
+
<div style="display: flex; justify-content: center; flex-wrap: wrap; gap: 20px; margin-bottom: 30px;">
|
853 |
+
<div style="background-color: white; border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1); width: 200px; padding: 15px; text-align: center;">
|
854 |
+
<div style="color: #1a73e8; font-size: 24px; margin-bottom: 10px;">📊</div>
|
855 |
+
<h3 style="color: #202124; margin-bottom: 10px; font-size: 16px;">Automatic Visualizations</h3>
|
856 |
+
<p style="color: #5f6368; font-size: 14px;">Get instant charts and plots revealing insights in your data</p>
|
857 |
+
</div>
|
858 |
+
|
859 |
+
<div style="background-color: white; border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1); width: 200px; padding: 15px; text-align: center;">
|
860 |
+
<div style="color: #1a73e8; font-size: 24px; margin-bottom: 10px;">🧠</div>
|
861 |
+
<h3 style="color: #202124; margin-bottom: 10px; font-size: 16px;">AI-Powered Analysis</h3>
|
862 |
+
<p style="color: #5f6368; font-size: 14px;">Advanced algorithms find patterns and correlations automatically</p>
|
863 |
+
</div>
|
864 |
+
|
865 |
+
<div style="background-color: white; border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1); width: 200px; padding: 15px; text-align: center;">
|
866 |
+
<div style="color: #1a73e8; font-size: 24px; margin-bottom: 10px;">💡</div>
|
867 |
+
<h3 style="color: #202124; margin-bottom: 10px; font-size: 16px;">Smart Recommendations</h3>
|
868 |
+
<p style="color: #5f6368; font-size: 14px;">Get suggestions for feature engineering and data preparation</p>
|
869 |
+
</div>
|
870 |
+
</div>
|
871 |
+
</div>
|
872 |
+
""", unsafe_allow_html=True)
|
873 |
+
|
874 |
+
# Import for subplot creation
|
875 |
+
from plotly.subplots import make_subplots
|
876 |
|
877 |
+
if __name__ == "__main__":
|
878 |
+
# Check if Groq API key is available
|
879 |
+
if not os.environ.get("GROQ_API_KEY"):
|
880 |
+
st.error("""
|
881 |
+
GROQ API key not found! Please set your GROQ_API_KEY environment variable.
|
882 |
+
|
883 |
+
You can get an API key from https://console.groq.com/
|
884 |
+
""")
|
885 |
+
else:
|
886 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|