Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +125 -718
src/streamlit_app.py
CHANGED
@@ -11,211 +11,6 @@ from dataclasses import dataclass
|
|
11 |
import tempfile
|
12 |
import base64
|
13 |
import io
|
14 |
-
import plotly.express as px
|
15 |
-
import plotly.graph_objects as go
|
16 |
-
|
17 |
-
# Set page configuration
|
18 |
-
st.set_page_config(
|
19 |
-
page_title="Data Analysis Assistant",
|
20 |
-
page_icon="📊",
|
21 |
-
layout="wide",
|
22 |
-
initial_sidebar_state="expanded"
|
23 |
-
)
|
24 |
-
|
25 |
-
# Custom CSS for DeepMind-inspired styling
|
26 |
-
st.markdown("""
|
27 |
-
<style>
|
28 |
-
/* Main font and colors */
|
29 |
-
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&display=swap');
|
30 |
-
|
31 |
-
html, body, [class*="css"] {
|
32 |
-
font-family: 'Inter', sans-serif;
|
33 |
-
}
|
34 |
-
|
35 |
-
/* Primary colors */
|
36 |
-
:root {
|
37 |
-
--primary-color: #1a73e8;
|
38 |
-
--secondary-color: #5f6368;
|
39 |
-
--accent-color: #34a853;
|
40 |
-
--background-color: #f8f9fa;
|
41 |
-
--card-background: #ffffff;
|
42 |
-
--border-color: #dadce0;
|
43 |
-
}
|
44 |
-
|
45 |
-
/* Header styling */
|
46 |
-
.main-header {
|
47 |
-
color: #202124;
|
48 |
-
font-weight: 700;
|
49 |
-
font-size: 2.5rem;
|
50 |
-
margin-bottom: 1rem;
|
51 |
-
background: linear-gradient(90deg, #1a73e8, #8ab4f8);
|
52 |
-
-webkit-background-clip: text;
|
53 |
-
-webkit-text-fill-color: transparent;
|
54 |
-
text-align: center;
|
55 |
-
}
|
56 |
-
|
57 |
-
.sub-header {
|
58 |
-
color: #5f6368;
|
59 |
-
font-weight: 500;
|
60 |
-
font-size: 1.5rem;
|
61 |
-
margin-bottom: 1.5rem;
|
62 |
-
text-align: center;
|
63 |
-
}
|
64 |
-
|
65 |
-
/* Card styling */
|
66 |
-
.card {
|
67 |
-
background-color: var(--card-background);
|
68 |
-
border-radius: 8px;
|
69 |
-
padding: 20px;
|
70 |
-
box-shadow: 0 1px 2px rgba(0, 0, 0, 0.1);
|
71 |
-
margin-bottom: 20px;
|
72 |
-
border: 1px solid var(--border-color);
|
73 |
-
}
|
74 |
-
|
75 |
-
.card-title {
|
76 |
-
font-weight: 600;
|
77 |
-
font-size: 1.2rem;
|
78 |
-
margin-bottom: 10px;
|
79 |
-
color: #202124;
|
80 |
-
}
|
81 |
-
|
82 |
-
/* Button styling */
|
83 |
-
.stButton > button {
|
84 |
-
background-color: var(--primary-color);
|
85 |
-
color: white;
|
86 |
-
border-radius: 4px;
|
87 |
-
padding: 0.5rem 1rem;
|
88 |
-
font-weight: 500;
|
89 |
-
border: none;
|
90 |
-
transition: all 0.3s;
|
91 |
-
}
|
92 |
-
|
93 |
-
.stButton > button:hover {
|
94 |
-
background-color: #1967d2;
|
95 |
-
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
|
96 |
-
}
|
97 |
-
|
98 |
-
/* Input fields */
|
99 |
-
.stTextInput > div > div > input {
|
100 |
-
border-radius: 4px;
|
101 |
-
border: 1px solid var(--border-color);
|
102 |
-
padding: 0.5rem;
|
103 |
-
}
|
104 |
-
|
105 |
-
/* Selectbox */
|
106 |
-
.stSelectbox > div > div > div {
|
107 |
-
border-radius: 4px;
|
108 |
-
border: 1px solid var(--border-color);
|
109 |
-
}
|
110 |
-
|
111 |
-
/* Spinner */
|
112 |
-
.stSpinner > div > div > div {
|
113 |
-
border-top-color: var(--primary-color) !important;
|
114 |
-
}
|
115 |
-
|
116 |
-
/* Success message */
|
117 |
-
.stSuccess {
|
118 |
-
background-color: #e6f4ea;
|
119 |
-
color: #34a853;
|
120 |
-
border: none;
|
121 |
-
border-radius: 4px;
|
122 |
-
}
|
123 |
-
|
124 |
-
/* Error message */
|
125 |
-
.stError {
|
126 |
-
background-color: #fce8e6;
|
127 |
-
color: #ea4335;
|
128 |
-
border: none;
|
129 |
-
border-radius: 4px;
|
130 |
-
}
|
131 |
-
|
132 |
-
/* File uploader */
|
133 |
-
.stFileUploader > div > button {
|
134 |
-
background-color: var(--primary-color);
|
135 |
-
color: white;
|
136 |
-
}
|
137 |
-
|
138 |
-
.stFileUploader > div {
|
139 |
-
border: 2px dashed var(--border-color);
|
140 |
-
border-radius: 8px;
|
141 |
-
padding: 20px;
|
142 |
-
}
|
143 |
-
|
144 |
-
/* Dataframe styling */
|
145 |
-
.dataframe-container {
|
146 |
-
border-radius: 8px;
|
147 |
-
overflow: hidden;
|
148 |
-
border: 1px solid var(--border-color);
|
149 |
-
}
|
150 |
-
|
151 |
-
/* Tabs styling */
|
152 |
-
.stTabs [data-baseweb="tab-list"] {
|
153 |
-
gap: 2px;
|
154 |
-
}
|
155 |
-
|
156 |
-
.stTabs [data-baseweb="tab"] {
|
157 |
-
background-color: transparent;
|
158 |
-
border-radius: 4px 4px 0 0;
|
159 |
-
border: none;
|
160 |
-
color: var(--secondary-color);
|
161 |
-
font-weight: 500;
|
162 |
-
}
|
163 |
-
|
164 |
-
.stTabs [aria-selected="true"] {
|
165 |
-
background-color: white;
|
166 |
-
color: var(--primary-color);
|
167 |
-
border-bottom: 2px solid var(--primary-color);
|
168 |
-
}
|
169 |
-
|
170 |
-
/* Animation for results */
|
171 |
-
@keyframes fadeIn {
|
172 |
-
from { opacity: 0; transform: translateY(10px); }
|
173 |
-
to { opacity: 1; transform: translateY(0); }
|
174 |
-
}
|
175 |
-
|
176 |
-
.fade-in {
|
177 |
-
animation: fadeIn 0.5s ease-out forwards;
|
178 |
-
}
|
179 |
-
|
180 |
-
/* Metrics styling */
|
181 |
-
.metric-card {
|
182 |
-
background-color: white;
|
183 |
-
border-radius: 8px;
|
184 |
-
padding: 15px;
|
185 |
-
box-shadow: 0 1px 3px rgba(0,0,0,0.1);
|
186 |
-
text-align: center;
|
187 |
-
border: 1px solid var(--border-color);
|
188 |
-
}
|
189 |
-
|
190 |
-
.metric-value {
|
191 |
-
font-size: 1.8rem;
|
192 |
-
font-weight: 700;
|
193 |
-
color: var(--primary-color);
|
194 |
-
}
|
195 |
-
|
196 |
-
.metric-label {
|
197 |
-
font-size: 0.9rem;
|
198 |
-
color: var(--secondary-color);
|
199 |
-
margin-top: 5px;
|
200 |
-
}
|
201 |
-
|
202 |
-
/* Sidebar styling */
|
203 |
-
.css-1d391kg {
|
204 |
-
background-color: white;
|
205 |
-
}
|
206 |
-
|
207 |
-
/* Logo display */
|
208 |
-
.logo-container {
|
209 |
-
display: flex;
|
210 |
-
justify-content: center;
|
211 |
-
margin-bottom: 20px;
|
212 |
-
}
|
213 |
-
|
214 |
-
.logo {
|
215 |
-
max-width: 180px;
|
216 |
-
}
|
217 |
-
</style>
|
218 |
-
""", unsafe_allow_html=True)
|
219 |
|
220 |
class GroqLLM:
|
221 |
"""Compatible LLM interface for smolagents CodeAgent"""
|
@@ -281,7 +76,20 @@ class DataAnalysisAgent(CodeAgent):
|
|
281 |
|
282 |
@tool
|
283 |
def analyze_basic_stats(data: pd.DataFrame) -> str:
|
284 |
-
"""Calculate basic statistical measures for numerical columns in the dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
# Access dataset from agent if no data provided
|
286 |
if data is None:
|
287 |
data = tool.agent.dataset
|
@@ -302,38 +110,50 @@ def analyze_basic_stats(data: pd.DataFrame) -> str:
|
|
302 |
|
303 |
@tool
|
304 |
def generate_correlation_matrix(data: pd.DataFrame) -> str:
|
305 |
-
"""Generate a visual correlation matrix for numerical columns in the dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
# Access dataset from agent if no data provided
|
307 |
if data is None:
|
308 |
data = tool.agent.dataset
|
309 |
|
310 |
numeric_data = data.select_dtypes(include=[np.number])
|
311 |
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
text_auto=True,
|
316 |
-
aspect="auto",
|
317 |
-
color_continuous_scale="Blues",
|
318 |
-
title="Feature Correlation Matrix"
|
319 |
-
)
|
320 |
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
plot_bgcolor="white",
|
326 |
-
title_font=dict(size=20, color="#202124", family="Inter, sans-serif"),
|
327 |
-
margin=dict(l=40, r=40, t=60, b=40),
|
328 |
-
)
|
329 |
-
|
330 |
-
# Convert to HTML for display
|
331 |
-
fig_html = fig.to_html(full_html=False, include_plotlyjs='cdn')
|
332 |
-
return fig_html
|
333 |
|
334 |
@tool
|
335 |
def analyze_categorical_columns(data: pd.DataFrame) -> str:
|
336 |
-
"""Analyze categorical columns in the dataset for distribution and frequencies.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
# Access dataset from agent if no data provided
|
338 |
if data is None:
|
339 |
data = tool.agent.dataset
|
@@ -348,48 +168,23 @@ def analyze_categorical_columns(data: pd.DataFrame) -> str:
|
|
348 |
'missing': int(data[col].isnull().sum())
|
349 |
}
|
350 |
|
351 |
-
|
352 |
-
html_content = "<div style='font-family: Inter, sans-serif;'>"
|
353 |
-
|
354 |
-
for col, stats in analysis.items():
|
355 |
-
html_content += f"<div class='card' style='margin-bottom: 20px; padding: 15px; border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1); background-color: white;'>"
|
356 |
-
html_content += f"<h3 style='color: #202124; margin-bottom: 10px;'>{col}</h3>"
|
357 |
-
html_content += f"<p><b>Unique Values:</b> {stats['unique_values']}</p>"
|
358 |
-
html_content += f"<p><b>Missing Values:</b> {stats['missing']}</p>"
|
359 |
-
|
360 |
-
# Add bar chart for top categories
|
361 |
-
if stats['top_categories']:
|
362 |
-
categories = list(stats['top_categories'].keys())
|
363 |
-
values = list(stats['top_categories'].values())
|
364 |
-
|
365 |
-
fig = go.Figure()
|
366 |
-
fig.add_trace(go.Bar(
|
367 |
-
x=categories,
|
368 |
-
y=values,
|
369 |
-
marker_color='#1a73e8',
|
370 |
-
hoverinfo='x+y'
|
371 |
-
))
|
372 |
-
|
373 |
-
fig.update_layout(
|
374 |
-
title=f"Top Categories for {col}",
|
375 |
-
xaxis_title="Category",
|
376 |
-
yaxis_title="Count",
|
377 |
-
font=dict(family="Inter, sans-serif"),
|
378 |
-
height=350,
|
379 |
-
margin=dict(l=40, r=40, t=60, b=80),
|
380 |
-
xaxis=dict(tickangle=-45)
|
381 |
-
)
|
382 |
-
|
383 |
-
html_content += fig.to_html(full_html=False, include_plotlyjs='cdn')
|
384 |
-
|
385 |
-
html_content += "</div>"
|
386 |
-
|
387 |
-
html_content += "</div>"
|
388 |
-
return html_content
|
389 |
|
390 |
@tool
|
391 |
def suggest_features(data: pd.DataFrame) -> str:
|
392 |
-
"""Suggest potential feature engineering steps based on data characteristics.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
393 |
# Access dataset from agent if no data provided
|
394 |
if data is None:
|
395 |
data = tool.agent.dataset
|
@@ -408,479 +203,91 @@ def suggest_features(data: pd.DataFrame) -> str:
|
|
408 |
if data[col].skew() > 1 or data[col].skew() < -1:
|
409 |
suggestions.append(f"Consider log transformation for {col} due to skewness")
|
410 |
|
411 |
-
|
412 |
-
html_content = """
|
413 |
-
<div style='font-family: Inter, sans-serif; background-color: #f8f9fa; padding: 20px; border-radius: 8px;'>
|
414 |
-
<h3 style='color: #202124; margin-bottom: 15px;'>Feature Engineering Suggestions</h3>
|
415 |
-
<ul style='list-style-type: none; padding-left: 0;'>
|
416 |
-
"""
|
417 |
-
|
418 |
-
for suggestion in suggestions:
|
419 |
-
html_content += f"""
|
420 |
-
<li style='margin-bottom: 10px; padding: 12px; background-color: white;
|
421 |
-
border-left: 4px solid #1a73e8; border-radius: 4px; box-shadow: 0 1px 2px rgba(0,0,0,0.1);'>
|
422 |
-
<div style='display: flex; align-items: center;'>
|
423 |
-
<span style='color: #1a73e8; font-size: 18px; margin-right: 10px;'>✓</span>
|
424 |
-
<span>{suggestion}</span>
|
425 |
-
</div>
|
426 |
-
</li>
|
427 |
-
"""
|
428 |
-
|
429 |
-
if not suggestions:
|
430 |
-
html_content += """
|
431 |
-
<li style='margin-bottom: 10px; padding: 12px; background-color: white;
|
432 |
-
border-left: 4px solid #fbbc04; border-radius: 4px; box-shadow: 0 1px 2px rgba(0,0,0,0.1);'>
|
433 |
-
<div style='display: flex; align-items: center;'>
|
434 |
-
<span style='color: #fbbc04; font-size: 18px; margin-right: 10px;'>!</span>
|
435 |
-
<span>No specific feature engineering suggestions found for this dataset.</span>
|
436 |
-
</div>
|
437 |
-
</li>
|
438 |
-
"""
|
439 |
-
|
440 |
-
html_content += """
|
441 |
-
</ul>
|
442 |
-
</div>
|
443 |
-
"""
|
444 |
-
|
445 |
-
return html_content
|
446 |
-
|
447 |
-
@tool
|
448 |
-
def visualize_distributions(data: pd.DataFrame) -> str:
|
449 |
-
"""Create visualizations of numerical column distributions."""
|
450 |
-
# Access dataset from agent if no data provided
|
451 |
-
if data is None:
|
452 |
-
data = tool.agent.dataset
|
453 |
-
|
454 |
-
numeric_cols = data.select_dtypes(include=[np.number]).columns
|
455 |
-
|
456 |
-
if len(numeric_cols) == 0:
|
457 |
-
return "No numerical columns found in the dataset."
|
458 |
-
|
459 |
-
# Create HTML content with visualizations
|
460 |
-
html_content = "<div style='font-family: Inter, sans-serif;'>"
|
461 |
-
|
462 |
-
# Create a grid of histograms using plotly
|
463 |
-
fig = make_subplots(rows=len(numeric_cols), cols=1,
|
464 |
-
subplot_titles=numeric_cols,
|
465 |
-
vertical_spacing=0.05)
|
466 |
-
|
467 |
-
for i, col in enumerate(numeric_cols):
|
468 |
-
fig.add_trace(
|
469 |
-
go.Histogram(
|
470 |
-
x=data[col].dropna(),
|
471 |
-
name=col,
|
472 |
-
marker_color='#1a73e8',
|
473 |
-
opacity=0.7
|
474 |
-
),
|
475 |
-
row=i+1, col=1
|
476 |
-
)
|
477 |
-
|
478 |
-
fig.update_layout(
|
479 |
-
height=300 * len(numeric_cols),
|
480 |
-
width=800,
|
481 |
-
title_text="Distribution of Numerical Features",
|
482 |
-
showlegend=False,
|
483 |
-
font=dict(family="Inter, sans-serif"),
|
484 |
-
margin=dict(l=40, r=40, t=40, b=20),
|
485 |
-
)
|
486 |
-
|
487 |
-
html_content += fig.to_html(full_html=False, include_plotlyjs='cdn')
|
488 |
-
html_content += "</div>"
|
489 |
-
|
490 |
-
return html_content
|
491 |
-
|
492 |
-
def generate_deepmind_logo():
|
493 |
-
"""Generate a placeholder logo similar to DeepMind's style."""
|
494 |
-
fig = go.Figure()
|
495 |
-
|
496 |
-
# Create simple geometric shapes for logo
|
497 |
-
fig.add_shape(
|
498 |
-
type="circle",
|
499 |
-
x0=0.3, y0=0.3, x1=0.7, y1=0.7,
|
500 |
-
line=dict(color="#1a73e8", width=3),
|
501 |
-
fillcolor="rgba(26, 115, 232, 0.2)",
|
502 |
-
)
|
503 |
-
|
504 |
-
fig.add_shape(
|
505 |
-
type="circle",
|
506 |
-
x0=0.4, y0=0.4, x1=0.6, y1=0.6,
|
507 |
-
line=dict(color="#1a73e8", width=2),
|
508 |
-
fillcolor="rgba(26, 115, 232, 0.4)",
|
509 |
-
)
|
510 |
-
|
511 |
-
fig.update_layout(
|
512 |
-
width=180,
|
513 |
-
height=60,
|
514 |
-
paper_bgcolor='rgba(0,0,0,0)',
|
515 |
-
plot_bgcolor='rgba(0,0,0,0)',
|
516 |
-
margin=dict(l=0, r=0, t=0, b=0),
|
517 |
-
showlegend=False,
|
518 |
-
xaxis=dict(showgrid=False, zeroline=False, visible=False),
|
519 |
-
yaxis=dict(showgrid=False, zeroline=False, visible=False),
|
520 |
-
)
|
521 |
-
|
522 |
-
return fig.to_html(full_html=False, include_plotlyjs='cdn')
|
523 |
|
524 |
def main():
|
525 |
-
|
526 |
-
st.
|
527 |
-
<div class="logo-container">
|
528 |
-
<div class="logo">
|
529 |
-
<svg width="180" height="60" viewBox="0 0 180 60" fill="none" xmlns="http://www.w3.org/2000/svg">
|
530 |
-
<circle cx="30" cy="30" r="20" fill="#1a73e8" opacity="0.2" stroke="#1a73e8" stroke-width="2"/>
|
531 |
-
<circle cx="30" cy="30" r="10" fill="#1a73e8" opacity="0.4" stroke="#1a73e8" stroke-width="1.5"/>
|
532 |
-
<text x="60" y="35" font-family="Inter, sans-serif" font-size="18" font-weight="700" fill="#202124">Data Analysis</text>
|
533 |
-
</svg>
|
534 |
-
</div>
|
535 |
-
</div>
|
536 |
-
<h1 class="main-header">Data Analysis Assistant</h1>
|
537 |
-
<p class="sub-header">Upload your dataset and get intelligent insights with AI-powered analysis</p>
|
538 |
-
""", unsafe_allow_html=True)
|
539 |
|
540 |
# Initialize session state
|
541 |
if 'data' not in st.session_state:
|
542 |
st.session_state['data'] = None
|
543 |
if 'agent' not in st.session_state:
|
544 |
st.session_state['agent'] = None
|
545 |
-
if 'analysis_results' not in st.session_state:
|
546 |
-
st.session_state['analysis_results'] = None
|
547 |
|
548 |
-
|
549 |
-
col1, col2 = st.columns([1, 3])
|
550 |
|
551 |
-
|
552 |
-
st.markdown('<div class="card">', unsafe_allow_html=True)
|
553 |
-
st.markdown('<div class="card-title">Upload Dataset</div>', unsafe_allow_html=True)
|
554 |
-
|
555 |
-
# File uploader with custom styling
|
556 |
-
uploaded_file = st.file_uploader("", type="csv")
|
557 |
-
|
558 |
if uploaded_file is not None:
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
st.session_state['data'] = data
|
564 |
-
|
565 |
-
# Initialize the agent with the dataset
|
566 |
-
st.session_state['agent'] = DataAnalysisAgent(
|
567 |
-
dataset=data,
|
568 |
-
tools=[analyze_basic_stats, generate_correlation_matrix,
|
569 |
-
analyze_categorical_columns, suggest_features,
|
570 |
-
visualize_distributions],
|
571 |
-
model=GroqLLM(),
|
572 |
-
additional_authorized_imports=["pandas", "numpy", "matplotlib",
|
573 |
-
"seaborn", "plotly"]
|
574 |
-
)
|
575 |
-
|
576 |
-
# Display dataset statistics
|
577 |
-
st.markdown("""
|
578 |
-
<div style="background-color: #e6f4ea; padding: 10px; border-radius: 4px; margin-top: 10px;">
|
579 |
-
<div style="display: flex; align-items: center;">
|
580 |
-
<span style="color: #34a853; font-size: 20px; margin-right: 10px;">✓</span>
|
581 |
-
<span style="color: #34a853; font-weight: 500;">Dataset loaded successfully</span>
|
582 |
-
</div>
|
583 |
-
</div>
|
584 |
-
""", unsafe_allow_html=True)
|
585 |
-
|
586 |
-
col1, col2 = st.columns(2)
|
587 |
-
with col1:
|
588 |
-
st.markdown(f"""
|
589 |
-
<div class="metric-card">
|
590 |
-
<div class="metric-value">{data.shape[0]:,}</div>
|
591 |
-
<div class="metric-label">Rows</div>
|
592 |
-
</div>
|
593 |
-
""", unsafe_allow_html=True)
|
594 |
-
|
595 |
-
with col2:
|
596 |
-
st.markdown(f"""
|
597 |
-
<div class="metric-card">
|
598 |
-
<div class="metric-value">{data.shape[1]}</div>
|
599 |
-
<div class="metric-label">Columns</div>
|
600 |
-
</div>
|
601 |
-
""", unsafe_allow_html=True)
|
602 |
|
603 |
-
|
604 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
605 |
|
606 |
-
# Analysis type selection
|
607 |
if st.session_state['data'] is not None:
|
608 |
-
st.markdown('<div class="card-title" style="margin-top: 20px;">Analysis Tools</div>', unsafe_allow_html=True)
|
609 |
-
|
610 |
analysis_type = st.selectbox(
|
611 |
-
"
|
612 |
-
["
|
613 |
-
"
|
614 |
-
"Ask Your Own Question"]
|
615 |
)
|
616 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
617 |
-
|
618 |
-
# Main content area
|
619 |
-
with col2:
|
620 |
-
if st.session_state['data'] is not None:
|
621 |
-
# Data preview tab
|
622 |
-
st.markdown('<div class="card">', unsafe_allow_html=True)
|
623 |
-
st.markdown('<div class="card-title">Data Preview</div>', unsafe_allow_html=True)
|
624 |
-
|
625 |
-
# Add tabs for different data views
|
626 |
-
data_tabs = st.tabs(["Data Sample", "Column Info", "Missing Values"])
|
627 |
-
|
628 |
-
with data_tabs[0]:
|
629 |
-
st.markdown('<div class="dataframe-container">', unsafe_allow_html=True)
|
630 |
-
st.dataframe(st.session_state['data'].head(10), use_container_width=True)
|
631 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
632 |
-
|
633 |
-
with data_tabs[1]:
|
634 |
-
col1, col2, col3 = st.columns(3)
|
635 |
-
with col1:
|
636 |
-
st.markdown("**Column Names**")
|
637 |
-
st.write(st.session_state['data'].columns.tolist())
|
638 |
-
with col2:
|
639 |
-
st.markdown("**Data Types**")
|
640 |
-
for col, dtype in st.session_state['data'].dtypes.items():
|
641 |
-
st.write(f"{col}: {dtype}")
|
642 |
-
with col3:
|
643 |
-
st.markdown("**Non-Null Count**")
|
644 |
-
for col, count in st.session_state['data'].count().items():
|
645 |
-
st.write(f"{col}: {count}/{len(st.session_state['data'])}")
|
646 |
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
'Missing Values': missing_data.values,
|
653 |
-
'Percentage': round(missing_data.values / len(st.session_state['data']) * 100, 2)
|
654 |
-
})
|
655 |
-
missing_df = missing_df[missing_df['Missing Values'] > 0].sort_values('Missing Values', ascending=False)
|
656 |
-
st.dataframe(missing_df, use_container_width=True)
|
657 |
-
|
658 |
-
# Add a visualization of missing values
|
659 |
-
fig = px.bar(
|
660 |
-
missing_df,
|
661 |
-
x='Column',
|
662 |
-
y='Percentage',
|
663 |
-
color='Percentage',
|
664 |
-
color_continuous_scale='Blues',
|
665 |
-
title='Missing Values by Column (%)'
|
666 |
-
)
|
667 |
-
fig.update_layout(
|
668 |
-
xaxis_title='',
|
669 |
-
yaxis_title='Missing Values (%)',
|
670 |
-
height=400
|
671 |
)
|
672 |
-
st.
|
673 |
-
else:
|
674 |
-
st.success("No missing values in the dataset!")
|
675 |
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
with col1:
|
687 |
-
st.markdown("### Dataset Summary")
|
688 |
-
st.dataframe(st.session_state['data'].describe(), use_container_width=True)
|
689 |
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
values=[numeric_count, categorical_count],
|
698 |
-
names=['Numeric', 'Categorical'],
|
699 |
-
color_discrete_sequence=['#1a73e8', '#34a853'],
|
700 |
-
hole=0.4
|
701 |
-
)
|
702 |
-
fig.update_layout(
|
703 |
-
title='Column Types',
|
704 |
-
font=dict(family="Inter, sans-serif"),
|
705 |
-
legend=dict(orientation="h", yanchor="bottom", y=-0.2, xanchor="center", x=0.5)
|
706 |
-
)
|
707 |
-
st.plotly_chart(fig, use_container_width=True)
|
708 |
-
|
709 |
-
elif analysis_type == "Basic Statistics":
|
710 |
-
with st.spinner('Analyzing basic statistics...'):
|
711 |
-
result = st.session_state['agent'].run(
|
712 |
-
"Use the analyze_basic_stats tool to analyze this dataset and "
|
713 |
-
"provide insights about the numerical distributions."
|
714 |
-
)
|
715 |
-
|
716 |
-
# Parse the string representation of the dictionary
|
717 |
-
try:
|
718 |
-
# Remove the literal 'str' prefix if present
|
719 |
-
if result.startswith("str("):
|
720 |
-
result = result[4:-1]
|
721 |
-
|
722 |
-
# Convert string to dict
|
723 |
-
import ast
|
724 |
-
stats_dict = ast.literal_eval(result)
|
725 |
-
|
726 |
-
# Display results in a more visual format
|
727 |
-
for col, stats in stats_dict.items():
|
728 |
-
st.markdown(f"### {col}")
|
729 |
-
|
730 |
-
# Create metrics in columns
|
731 |
-
col1, col2, col3, col4 = st.columns(4)
|
732 |
-
|
733 |
-
with col1:
|
734 |
-
st.metric("Mean", f"{stats['mean']:.2f}")
|
735 |
-
with col2:
|
736 |
-
st.metric("Median", f"{stats['median']:.2f}")
|
737 |
-
with col3:
|
738 |
-
st.metric("Std Dev", f"{stats['std']:.2f}")
|
739 |
-
with col4:
|
740 |
-
st.metric("Skewness", f"{stats['skew']:.2f}")
|
741 |
-
|
742 |
-
# Create a boxplot for this column
|
743 |
-
fig = px.box(
|
744 |
-
st.session_state['data'],
|
745 |
-
y=col,
|
746 |
-
points="all",
|
747 |
-
color_discrete_sequence=['#1a73e8'],
|
748 |
-
title=f"Distribution of {col}"
|
749 |
-
)
|
750 |
-
fig.update_layout(
|
751 |
-
height=300,
|
752 |
-
margin=dict(t=40, b=20, l=40, r=20),
|
753 |
-
font=dict(family="Inter, sans-serif")
|
754 |
-
)
|
755 |
-
st.plotly_chart(fig, use_container_width=True)
|
756 |
-
|
757 |
-
st.markdown("---")
|
758 |
-
|
759 |
-
except Exception as e:
|
760 |
-
st.write(result)
|
761 |
-
|
762 |
-
elif analysis_type == "Feature Correlations":
|
763 |
-
with st.spinner('Analyzing feature correlations...'):
|
764 |
-
result = st.session_state['agent'].run(
|
765 |
-
"Use the generate_correlation_matrix tool to analyze correlations "
|
766 |
-
"and explain any strong relationships found."
|
767 |
-
)
|
768 |
-
|
769 |
-
# If the result is HTML, display it directly
|
770 |
-
if isinstance(result, str) and ("<div" in result or "<html" in result):
|
771 |
-
st.components.v1.html(result, height=650)
|
772 |
-
else:
|
773 |
-
st.write(result)
|
774 |
-
|
775 |
-
elif analysis_type == "Categorical Analysis":
|
776 |
-
with st.spinner('Analyzing categorical data...'):
|
777 |
-
result = st.session_state['agent'].run(
|
778 |
-
"Use the analyze_categorical_columns tool to analyze categorical data "
|
779 |
-
"and provide insights about distributions and frequencies."
|
780 |
-
)
|
781 |
-
|
782 |
-
# Display the HTML content
|
783 |
-
if isinstance(result, str) and ("<div" in result or "<html" in result):
|
784 |
-
st.components.v1.html(result, height=700)
|
785 |
-
else:
|
786 |
-
st.write(result)
|
787 |
-
|
788 |
-
elif analysis_type == "Feature Engineering":
|
789 |
-
with st.spinner('Analyzing feature engineering possibilities...'):
|
790 |
-
result = st.session_state['agent'].run(
|
791 |
-
"Use the suggest_features tool to identify potential feature engineering "
|
792 |
-
"steps that could improve model performance."
|
793 |
-
)
|
794 |
-
|
795 |
-
# Display the HTML content
|
796 |
-
if isinstance(result, str) and ("<div" in result or "<html" in result):
|
797 |
-
st.components.v1.html(result, height=500)
|
798 |
-
else:
|
799 |
-
st.write(result)
|
800 |
-
|
801 |
-
elif analysis_type == "Data Distributions":
|
802 |
-
with st.spinner('Analyzing data distributions...'):
|
803 |
-
result = st.session_state['agent'].run(
|
804 |
-
"Use the visualize_distributions tool to analyze the numerical distributions "
|
805 |
-
"and identify any unusual patterns or outliers."
|
806 |
-
)
|
807 |
-
|
808 |
-
# Display the HTML content
|
809 |
-
if isinstance(result, str) and ("<div" in result or "<html" in result):
|
810 |
-
st.components.v1.html(result, height=800)
|
811 |
-
else:
|
812 |
-
st.write(result)
|
813 |
-
|
814 |
-
elif analysis_type == "Ask Your Own Question":
|
815 |
-
# Free-form question input
|
816 |
-
user_question = st.text_area("What would you like to know about this dataset?",
|
817 |
-
"What are the key insights from this dataset?")
|
818 |
|
819 |
-
|
820 |
-
|
821 |
-
|
822 |
-
|
|
|
|
|
|
|
823 |
|
824 |
-
|
825 |
-
|
826 |
-
|
|
|
|
|
|
|
827 |
|
828 |
-
|
829 |
-
|
830 |
-
st.components.v1.html(st.session_state['analysis_results'], height=600)
|
831 |
-
else:
|
832 |
-
st.write(st.session_state['analysis_results'])
|
833 |
-
|
834 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
835 |
-
|
836 |
-
else:
|
837 |
-
# Display welcome message for users who haven't uploaded data yet
|
838 |
-
st.markdown("""
|
839 |
-
<div class="card fade-in">
|
840 |
-
<div style="text-align: center; padding: 50px 20px;">
|
841 |
-
<svg width="80" height="80" viewBox="0 0 80 80" fill="none" xmlns="http://www.w3.org/2000/svg" style="margin-bottom: 20px;">
|
842 |
-
<circle cx="40" cy="40" r="30" fill="#1a73e8" opacity="0.2" stroke="#1a73e8" stroke-width="2"/>
|
843 |
-
<circle cx="40" cy="40" r="15" fill="#1a73e8" opacity="0.4" stroke="#1a73e8" stroke-width="1.5"/>
|
844 |
-
</svg>
|
845 |
-
<h2 style="color: #202124; margin-bottom: 15px;">Welcome to Data Analysis Assistant</h2>
|
846 |
-
<p style="color: #5f6368; font-size: 16px; max-width: 600px; margin: 0 auto 25px auto;">
|
847 |
-
Upload a CSV file to get started with instant insights and intelligent analysis.
|
848 |
-
Our AI-powered assistant will help you understand your data like never before.
|
849 |
-
</p>
|
850 |
-
</div>
|
851 |
-
|
852 |
-
<div style="display: flex; justify-content: center; flex-wrap: wrap; gap: 20px; margin-bottom: 30px;">
|
853 |
-
<div style="background-color: white; border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1); width: 200px; padding: 15px; text-align: center;">
|
854 |
-
<div style="color: #1a73e8; font-size: 24px; margin-bottom: 10px;">📊</div>
|
855 |
-
<h3 style="color: #202124; margin-bottom: 10px; font-size: 16px;">Automatic Visualizations</h3>
|
856 |
-
<p style="color: #5f6368; font-size: 14px;">Get instant charts and plots revealing insights in your data</p>
|
857 |
-
</div>
|
858 |
-
|
859 |
-
<div style="background-color: white; border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1); width: 200px; padding: 15px; text-align: center;">
|
860 |
-
<div style="color: #1a73e8; font-size: 24px; margin-bottom: 10px;">🧠</div>
|
861 |
-
<h3 style="color: #202124; margin-bottom: 10px; font-size: 16px;">AI-Powered Analysis</h3>
|
862 |
-
<p style="color: #5f6368; font-size: 14px;">Advanced algorithms find patterns and correlations automatically</p>
|
863 |
-
</div>
|
864 |
-
|
865 |
-
<div style="background-color: white; border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1); width: 200px; padding: 15px; text-align: center;">
|
866 |
-
<div style="color: #1a73e8; font-size: 24px; margin-bottom: 10px;">💡</div>
|
867 |
-
<h3 style="color: #202124; margin-bottom: 10px; font-size: 16px;">Smart Recommendations</h3>
|
868 |
-
<p style="color: #5f6368; font-size: 14px;">Get suggestions for feature engineering and data preparation</p>
|
869 |
-
</div>
|
870 |
-
</div>
|
871 |
-
</div>
|
872 |
-
""", unsafe_allow_html=True)
|
873 |
-
|
874 |
-
# Import for subplot creation
|
875 |
-
from plotly.subplots import make_subplots
|
876 |
|
877 |
if __name__ == "__main__":
|
878 |
-
|
879 |
-
if not os.environ.get("GROQ_API_KEY"):
|
880 |
-
st.error("""
|
881 |
-
GROQ API key not found! Please set your GROQ_API_KEY environment variable.
|
882 |
-
|
883 |
-
You can get an API key from https://console.groq.com/
|
884 |
-
""")
|
885 |
-
else:
|
886 |
-
main()
|
|
|
11 |
import tempfile
|
12 |
import base64
|
13 |
import io
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
class GroqLLM:
|
16 |
"""Compatible LLM interface for smolagents CodeAgent"""
|
|
|
76 |
|
77 |
@tool
|
78 |
def analyze_basic_stats(data: pd.DataFrame) -> str:
|
79 |
+
"""Calculate basic statistical measures for numerical columns in the dataset.
|
80 |
+
|
81 |
+
This function computes fundamental statistical metrics including mean, median,
|
82 |
+
standard deviation, skewness, and counts of missing values for all numerical
|
83 |
+
columns in the provided DataFrame.
|
84 |
+
|
85 |
+
Args:
|
86 |
+
data: A pandas DataFrame containing the dataset to analyze. The DataFrame
|
87 |
+
should contain at least one numerical column for meaningful analysis.
|
88 |
+
|
89 |
+
Returns:
|
90 |
+
str: A string containing formatted basic statistics for each numerical column,
|
91 |
+
including mean, median, standard deviation, skewness, and missing value counts.
|
92 |
+
"""
|
93 |
# Access dataset from agent if no data provided
|
94 |
if data is None:
|
95 |
data = tool.agent.dataset
|
|
|
110 |
|
111 |
@tool
|
112 |
def generate_correlation_matrix(data: pd.DataFrame) -> str:
|
113 |
+
"""Generate a visual correlation matrix for numerical columns in the dataset.
|
114 |
+
|
115 |
+
This function creates a heatmap visualization showing the correlations between
|
116 |
+
all numerical columns in the dataset. The correlation values are displayed
|
117 |
+
using a color-coded matrix for easy interpretation.
|
118 |
+
|
119 |
+
Args:
|
120 |
+
data: A pandas DataFrame containing the dataset to analyze. The DataFrame
|
121 |
+
should contain at least two numerical columns for correlation analysis.
|
122 |
+
|
123 |
+
Returns:
|
124 |
+
str: A base64 encoded string representing the correlation matrix plot image,
|
125 |
+
which can be displayed in a web interface or saved as an image file.
|
126 |
+
"""
|
127 |
# Access dataset from agent if no data provided
|
128 |
if data is None:
|
129 |
data = tool.agent.dataset
|
130 |
|
131 |
numeric_data = data.select_dtypes(include=[np.number])
|
132 |
|
133 |
+
plt.figure(figsize=(10, 8))
|
134 |
+
sns.heatmap(numeric_data.corr(), annot=True, cmap='coolwarm')
|
135 |
+
plt.title('Correlation Matrix')
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
+
buf = io.BytesIO()
|
138 |
+
plt.savefig(buf, format='png')
|
139 |
+
plt.close()
|
140 |
+
return base64.b64encode(buf.getvalue()).decode()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
@tool
|
143 |
def analyze_categorical_columns(data: pd.DataFrame) -> str:
|
144 |
+
"""Analyze categorical columns in the dataset for distribution and frequencies.
|
145 |
+
|
146 |
+
This function examines categorical columns to identify unique values, top categories,
|
147 |
+
and missing value counts, providing insights into the categorical data distribution.
|
148 |
+
|
149 |
+
Args:
|
150 |
+
data: A pandas DataFrame containing the dataset to analyze. The DataFrame
|
151 |
+
should contain at least one categorical column for meaningful analysis.
|
152 |
+
|
153 |
+
Returns:
|
154 |
+
str: A string containing formatted analysis results for each categorical column,
|
155 |
+
including unique value counts, top categories, and missing value counts.
|
156 |
+
"""
|
157 |
# Access dataset from agent if no data provided
|
158 |
if data is None:
|
159 |
data = tool.agent.dataset
|
|
|
168 |
'missing': int(data[col].isnull().sum())
|
169 |
}
|
170 |
|
171 |
+
return str(analysis)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
@tool
|
174 |
def suggest_features(data: pd.DataFrame) -> str:
|
175 |
+
"""Suggest potential feature engineering steps based on data characteristics.
|
176 |
+
|
177 |
+
This function analyzes the dataset's structure and statistical properties to
|
178 |
+
recommend possible feature engineering steps that could improve model performance.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
data: A pandas DataFrame containing the dataset to analyze. The DataFrame
|
182 |
+
can contain both numerical and categorical columns.
|
183 |
+
|
184 |
+
Returns:
|
185 |
+
str: A string containing suggestions for feature engineering based on
|
186 |
+
the characteristics of the input data.
|
187 |
+
"""
|
188 |
# Access dataset from agent if no data provided
|
189 |
if data is None:
|
190 |
data = tool.agent.dataset
|
|
|
203 |
if data[col].skew() > 1 or data[col].skew() < -1:
|
204 |
suggestions.append(f"Consider log transformation for {col} due to skewness")
|
205 |
|
206 |
+
return '\n'.join(suggestions)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
|
208 |
def main():
|
209 |
+
st.title("Data Analysis Assistant")
|
210 |
+
st.write("Upload your dataset and get automated analysis with natural language interaction.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
|
212 |
# Initialize session state
|
213 |
if 'data' not in st.session_state:
|
214 |
st.session_state['data'] = None
|
215 |
if 'agent' not in st.session_state:
|
216 |
st.session_state['agent'] = None
|
|
|
|
|
217 |
|
218 |
+
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
|
|
219 |
|
220 |
+
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
if uploaded_file is not None:
|
222 |
+
with st.spinner('Loading and processing your data...'):
|
223 |
+
# Load the dataset
|
224 |
+
data = pd.read_csv(uploaded_file)
|
225 |
+
st.session_state['data'] = data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
+
# Initialize the agent with the dataset
|
228 |
+
st.session_state['agent'] = DataAnalysisAgent(
|
229 |
+
dataset=data,
|
230 |
+
tools=[analyze_basic_stats, generate_correlation_matrix,
|
231 |
+
analyze_categorical_columns, suggest_features],
|
232 |
+
model=GroqLLM(),
|
233 |
+
additional_authorized_imports=["pandas", "numpy", "matplotlib", "seaborn"]
|
234 |
+
)
|
235 |
+
|
236 |
+
st.success(f'Successfully loaded dataset with {data.shape[0]} rows and {data.shape[1]} columns')
|
237 |
+
st.subheader("Data Preview")
|
238 |
+
st.dataframe(data.head())
|
239 |
|
|
|
240 |
if st.session_state['data'] is not None:
|
|
|
|
|
241 |
analysis_type = st.selectbox(
|
242 |
+
"Choose analysis type",
|
243 |
+
["Basic Statistics", "Correlation Analysis", "Categorical Analysis",
|
244 |
+
"Feature Engineering", "Custom Question"]
|
|
|
245 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
|
247 |
+
if analysis_type == "Basic Statistics":
|
248 |
+
with st.spinner('Analyzing basic statistics...'):
|
249 |
+
result = st.session_state['agent'].run(
|
250 |
+
"Use the analyze_basic_stats tool to analyze this dataset and "
|
251 |
+
"provide insights about the numerical distributions."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
)
|
253 |
+
st.write(result)
|
|
|
|
|
254 |
|
255 |
+
elif analysis_type == "Correlation Analysis":
|
256 |
+
with st.spinner('Generating correlation matrix...'):
|
257 |
+
result = st.session_state['agent'].run(
|
258 |
+
"Use the generate_correlation_matrix tool to analyze correlations "
|
259 |
+
"and explain any strong relationships found."
|
260 |
+
)
|
261 |
+
if isinstance(result, str) and result.startswith('data:image') or ',' in result:
|
262 |
+
st.image(f"data:image/png;base64,{result.split(',')[-1]}")
|
263 |
+
else:
|
264 |
+
st.write(result)
|
|
|
|
|
|
|
265 |
|
266 |
+
elif analysis_type == "Categorical Analysis":
|
267 |
+
with st.spinner('Analyzing categorical columns...'):
|
268 |
+
result = st.session_state['agent'].run(
|
269 |
+
"Use the analyze_categorical_columns tool to examine the "
|
270 |
+
"categorical variables and explain the distributions."
|
271 |
+
)
|
272 |
+
st.write(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
|
274 |
+
elif analysis_type == "Feature Engineering":
|
275 |
+
with st.spinner('Generating feature suggestions...'):
|
276 |
+
result = st.session_state['agent'].run(
|
277 |
+
"Use the suggest_features tool to recommend potential "
|
278 |
+
"feature engineering steps for this dataset."
|
279 |
+
)
|
280 |
+
st.write(result)
|
281 |
|
282 |
+
elif analysis_type == "Custom Question":
|
283 |
+
question = st.text_input("What would you like to know about your data?")
|
284 |
+
if question:
|
285 |
+
with st.spinner('Analyzing...'):
|
286 |
+
result = st.session_state['agent'].run(question)
|
287 |
+
st.write(result)
|
288 |
|
289 |
+
except Exception as e:
|
290 |
+
st.error(f"An error occurred: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
291 |
|
292 |
if __name__ == "__main__":
|
293 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|