Spaces:
Build error
Build error
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +125 -718
src/streamlit_app.py
CHANGED
|
@@ -11,211 +11,6 @@ from dataclasses import dataclass
|
|
| 11 |
import tempfile
|
| 12 |
import base64
|
| 13 |
import io
|
| 14 |
-
import plotly.express as px
|
| 15 |
-
import plotly.graph_objects as go
|
| 16 |
-
|
| 17 |
-
# Set page configuration
|
| 18 |
-
st.set_page_config(
|
| 19 |
-
page_title="Data Analysis Assistant",
|
| 20 |
-
page_icon="📊",
|
| 21 |
-
layout="wide",
|
| 22 |
-
initial_sidebar_state="expanded"
|
| 23 |
-
)
|
| 24 |
-
|
| 25 |
-
# Custom CSS for DeepMind-inspired styling
|
| 26 |
-
st.markdown("""
|
| 27 |
-
<style>
|
| 28 |
-
/* Main font and colors */
|
| 29 |
-
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&display=swap');
|
| 30 |
-
|
| 31 |
-
html, body, [class*="css"] {
|
| 32 |
-
font-family: 'Inter', sans-serif;
|
| 33 |
-
}
|
| 34 |
-
|
| 35 |
-
/* Primary colors */
|
| 36 |
-
:root {
|
| 37 |
-
--primary-color: #1a73e8;
|
| 38 |
-
--secondary-color: #5f6368;
|
| 39 |
-
--accent-color: #34a853;
|
| 40 |
-
--background-color: #f8f9fa;
|
| 41 |
-
--card-background: #ffffff;
|
| 42 |
-
--border-color: #dadce0;
|
| 43 |
-
}
|
| 44 |
-
|
| 45 |
-
/* Header styling */
|
| 46 |
-
.main-header {
|
| 47 |
-
color: #202124;
|
| 48 |
-
font-weight: 700;
|
| 49 |
-
font-size: 2.5rem;
|
| 50 |
-
margin-bottom: 1rem;
|
| 51 |
-
background: linear-gradient(90deg, #1a73e8, #8ab4f8);
|
| 52 |
-
-webkit-background-clip: text;
|
| 53 |
-
-webkit-text-fill-color: transparent;
|
| 54 |
-
text-align: center;
|
| 55 |
-
}
|
| 56 |
-
|
| 57 |
-
.sub-header {
|
| 58 |
-
color: #5f6368;
|
| 59 |
-
font-weight: 500;
|
| 60 |
-
font-size: 1.5rem;
|
| 61 |
-
margin-bottom: 1.5rem;
|
| 62 |
-
text-align: center;
|
| 63 |
-
}
|
| 64 |
-
|
| 65 |
-
/* Card styling */
|
| 66 |
-
.card {
|
| 67 |
-
background-color: var(--card-background);
|
| 68 |
-
border-radius: 8px;
|
| 69 |
-
padding: 20px;
|
| 70 |
-
box-shadow: 0 1px 2px rgba(0, 0, 0, 0.1);
|
| 71 |
-
margin-bottom: 20px;
|
| 72 |
-
border: 1px solid var(--border-color);
|
| 73 |
-
}
|
| 74 |
-
|
| 75 |
-
.card-title {
|
| 76 |
-
font-weight: 600;
|
| 77 |
-
font-size: 1.2rem;
|
| 78 |
-
margin-bottom: 10px;
|
| 79 |
-
color: #202124;
|
| 80 |
-
}
|
| 81 |
-
|
| 82 |
-
/* Button styling */
|
| 83 |
-
.stButton > button {
|
| 84 |
-
background-color: var(--primary-color);
|
| 85 |
-
color: white;
|
| 86 |
-
border-radius: 4px;
|
| 87 |
-
padding: 0.5rem 1rem;
|
| 88 |
-
font-weight: 500;
|
| 89 |
-
border: none;
|
| 90 |
-
transition: all 0.3s;
|
| 91 |
-
}
|
| 92 |
-
|
| 93 |
-
.stButton > button:hover {
|
| 94 |
-
background-color: #1967d2;
|
| 95 |
-
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
|
| 96 |
-
}
|
| 97 |
-
|
| 98 |
-
/* Input fields */
|
| 99 |
-
.stTextInput > div > div > input {
|
| 100 |
-
border-radius: 4px;
|
| 101 |
-
border: 1px solid var(--border-color);
|
| 102 |
-
padding: 0.5rem;
|
| 103 |
-
}
|
| 104 |
-
|
| 105 |
-
/* Selectbox */
|
| 106 |
-
.stSelectbox > div > div > div {
|
| 107 |
-
border-radius: 4px;
|
| 108 |
-
border: 1px solid var(--border-color);
|
| 109 |
-
}
|
| 110 |
-
|
| 111 |
-
/* Spinner */
|
| 112 |
-
.stSpinner > div > div > div {
|
| 113 |
-
border-top-color: var(--primary-color) !important;
|
| 114 |
-
}
|
| 115 |
-
|
| 116 |
-
/* Success message */
|
| 117 |
-
.stSuccess {
|
| 118 |
-
background-color: #e6f4ea;
|
| 119 |
-
color: #34a853;
|
| 120 |
-
border: none;
|
| 121 |
-
border-radius: 4px;
|
| 122 |
-
}
|
| 123 |
-
|
| 124 |
-
/* Error message */
|
| 125 |
-
.stError {
|
| 126 |
-
background-color: #fce8e6;
|
| 127 |
-
color: #ea4335;
|
| 128 |
-
border: none;
|
| 129 |
-
border-radius: 4px;
|
| 130 |
-
}
|
| 131 |
-
|
| 132 |
-
/* File uploader */
|
| 133 |
-
.stFileUploader > div > button {
|
| 134 |
-
background-color: var(--primary-color);
|
| 135 |
-
color: white;
|
| 136 |
-
}
|
| 137 |
-
|
| 138 |
-
.stFileUploader > div {
|
| 139 |
-
border: 2px dashed var(--border-color);
|
| 140 |
-
border-radius: 8px;
|
| 141 |
-
padding: 20px;
|
| 142 |
-
}
|
| 143 |
-
|
| 144 |
-
/* Dataframe styling */
|
| 145 |
-
.dataframe-container {
|
| 146 |
-
border-radius: 8px;
|
| 147 |
-
overflow: hidden;
|
| 148 |
-
border: 1px solid var(--border-color);
|
| 149 |
-
}
|
| 150 |
-
|
| 151 |
-
/* Tabs styling */
|
| 152 |
-
.stTabs [data-baseweb="tab-list"] {
|
| 153 |
-
gap: 2px;
|
| 154 |
-
}
|
| 155 |
-
|
| 156 |
-
.stTabs [data-baseweb="tab"] {
|
| 157 |
-
background-color: transparent;
|
| 158 |
-
border-radius: 4px 4px 0 0;
|
| 159 |
-
border: none;
|
| 160 |
-
color: var(--secondary-color);
|
| 161 |
-
font-weight: 500;
|
| 162 |
-
}
|
| 163 |
-
|
| 164 |
-
.stTabs [aria-selected="true"] {
|
| 165 |
-
background-color: white;
|
| 166 |
-
color: var(--primary-color);
|
| 167 |
-
border-bottom: 2px solid var(--primary-color);
|
| 168 |
-
}
|
| 169 |
-
|
| 170 |
-
/* Animation for results */
|
| 171 |
-
@keyframes fadeIn {
|
| 172 |
-
from { opacity: 0; transform: translateY(10px); }
|
| 173 |
-
to { opacity: 1; transform: translateY(0); }
|
| 174 |
-
}
|
| 175 |
-
|
| 176 |
-
.fade-in {
|
| 177 |
-
animation: fadeIn 0.5s ease-out forwards;
|
| 178 |
-
}
|
| 179 |
-
|
| 180 |
-
/* Metrics styling */
|
| 181 |
-
.metric-card {
|
| 182 |
-
background-color: white;
|
| 183 |
-
border-radius: 8px;
|
| 184 |
-
padding: 15px;
|
| 185 |
-
box-shadow: 0 1px 3px rgba(0,0,0,0.1);
|
| 186 |
-
text-align: center;
|
| 187 |
-
border: 1px solid var(--border-color);
|
| 188 |
-
}
|
| 189 |
-
|
| 190 |
-
.metric-value {
|
| 191 |
-
font-size: 1.8rem;
|
| 192 |
-
font-weight: 700;
|
| 193 |
-
color: var(--primary-color);
|
| 194 |
-
}
|
| 195 |
-
|
| 196 |
-
.metric-label {
|
| 197 |
-
font-size: 0.9rem;
|
| 198 |
-
color: var(--secondary-color);
|
| 199 |
-
margin-top: 5px;
|
| 200 |
-
}
|
| 201 |
-
|
| 202 |
-
/* Sidebar styling */
|
| 203 |
-
.css-1d391kg {
|
| 204 |
-
background-color: white;
|
| 205 |
-
}
|
| 206 |
-
|
| 207 |
-
/* Logo display */
|
| 208 |
-
.logo-container {
|
| 209 |
-
display: flex;
|
| 210 |
-
justify-content: center;
|
| 211 |
-
margin-bottom: 20px;
|
| 212 |
-
}
|
| 213 |
-
|
| 214 |
-
.logo {
|
| 215 |
-
max-width: 180px;
|
| 216 |
-
}
|
| 217 |
-
</style>
|
| 218 |
-
""", unsafe_allow_html=True)
|
| 219 |
|
| 220 |
class GroqLLM:
|
| 221 |
"""Compatible LLM interface for smolagents CodeAgent"""
|
|
@@ -281,7 +76,20 @@ class DataAnalysisAgent(CodeAgent):
|
|
| 281 |
|
| 282 |
@tool
|
| 283 |
def analyze_basic_stats(data: pd.DataFrame) -> str:
|
| 284 |
-
"""Calculate basic statistical measures for numerical columns in the dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
# Access dataset from agent if no data provided
|
| 286 |
if data is None:
|
| 287 |
data = tool.agent.dataset
|
|
@@ -302,38 +110,50 @@ def analyze_basic_stats(data: pd.DataFrame) -> str:
|
|
| 302 |
|
| 303 |
@tool
|
| 304 |
def generate_correlation_matrix(data: pd.DataFrame) -> str:
|
| 305 |
-
"""Generate a visual correlation matrix for numerical columns in the dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
# Access dataset from agent if no data provided
|
| 307 |
if data is None:
|
| 308 |
data = tool.agent.dataset
|
| 309 |
|
| 310 |
numeric_data = data.select_dtypes(include=[np.number])
|
| 311 |
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
text_auto=True,
|
| 316 |
-
aspect="auto",
|
| 317 |
-
color_continuous_scale="Blues",
|
| 318 |
-
title="Feature Correlation Matrix"
|
| 319 |
-
)
|
| 320 |
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
plot_bgcolor="white",
|
| 326 |
-
title_font=dict(size=20, color="#202124", family="Inter, sans-serif"),
|
| 327 |
-
margin=dict(l=40, r=40, t=60, b=40),
|
| 328 |
-
)
|
| 329 |
-
|
| 330 |
-
# Convert to HTML for display
|
| 331 |
-
fig_html = fig.to_html(full_html=False, include_plotlyjs='cdn')
|
| 332 |
-
return fig_html
|
| 333 |
|
| 334 |
@tool
|
| 335 |
def analyze_categorical_columns(data: pd.DataFrame) -> str:
|
| 336 |
-
"""Analyze categorical columns in the dataset for distribution and frequencies.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 337 |
# Access dataset from agent if no data provided
|
| 338 |
if data is None:
|
| 339 |
data = tool.agent.dataset
|
|
@@ -348,48 +168,23 @@ def analyze_categorical_columns(data: pd.DataFrame) -> str:
|
|
| 348 |
'missing': int(data[col].isnull().sum())
|
| 349 |
}
|
| 350 |
|
| 351 |
-
|
| 352 |
-
html_content = "<div style='font-family: Inter, sans-serif;'>"
|
| 353 |
-
|
| 354 |
-
for col, stats in analysis.items():
|
| 355 |
-
html_content += f"<div class='card' style='margin-bottom: 20px; padding: 15px; border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1); background-color: white;'>"
|
| 356 |
-
html_content += f"<h3 style='color: #202124; margin-bottom: 10px;'>{col}</h3>"
|
| 357 |
-
html_content += f"<p><b>Unique Values:</b> {stats['unique_values']}</p>"
|
| 358 |
-
html_content += f"<p><b>Missing Values:</b> {stats['missing']}</p>"
|
| 359 |
-
|
| 360 |
-
# Add bar chart for top categories
|
| 361 |
-
if stats['top_categories']:
|
| 362 |
-
categories = list(stats['top_categories'].keys())
|
| 363 |
-
values = list(stats['top_categories'].values())
|
| 364 |
-
|
| 365 |
-
fig = go.Figure()
|
| 366 |
-
fig.add_trace(go.Bar(
|
| 367 |
-
x=categories,
|
| 368 |
-
y=values,
|
| 369 |
-
marker_color='#1a73e8',
|
| 370 |
-
hoverinfo='x+y'
|
| 371 |
-
))
|
| 372 |
-
|
| 373 |
-
fig.update_layout(
|
| 374 |
-
title=f"Top Categories for {col}",
|
| 375 |
-
xaxis_title="Category",
|
| 376 |
-
yaxis_title="Count",
|
| 377 |
-
font=dict(family="Inter, sans-serif"),
|
| 378 |
-
height=350,
|
| 379 |
-
margin=dict(l=40, r=40, t=60, b=80),
|
| 380 |
-
xaxis=dict(tickangle=-45)
|
| 381 |
-
)
|
| 382 |
-
|
| 383 |
-
html_content += fig.to_html(full_html=False, include_plotlyjs='cdn')
|
| 384 |
-
|
| 385 |
-
html_content += "</div>"
|
| 386 |
-
|
| 387 |
-
html_content += "</div>"
|
| 388 |
-
return html_content
|
| 389 |
|
| 390 |
@tool
|
| 391 |
def suggest_features(data: pd.DataFrame) -> str:
|
| 392 |
-
"""Suggest potential feature engineering steps based on data characteristics.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 393 |
# Access dataset from agent if no data provided
|
| 394 |
if data is None:
|
| 395 |
data = tool.agent.dataset
|
|
@@ -408,479 +203,91 @@ def suggest_features(data: pd.DataFrame) -> str:
|
|
| 408 |
if data[col].skew() > 1 or data[col].skew() < -1:
|
| 409 |
suggestions.append(f"Consider log transformation for {col} due to skewness")
|
| 410 |
|
| 411 |
-
|
| 412 |
-
html_content = """
|
| 413 |
-
<div style='font-family: Inter, sans-serif; background-color: #f8f9fa; padding: 20px; border-radius: 8px;'>
|
| 414 |
-
<h3 style='color: #202124; margin-bottom: 15px;'>Feature Engineering Suggestions</h3>
|
| 415 |
-
<ul style='list-style-type: none; padding-left: 0;'>
|
| 416 |
-
"""
|
| 417 |
-
|
| 418 |
-
for suggestion in suggestions:
|
| 419 |
-
html_content += f"""
|
| 420 |
-
<li style='margin-bottom: 10px; padding: 12px; background-color: white;
|
| 421 |
-
border-left: 4px solid #1a73e8; border-radius: 4px; box-shadow: 0 1px 2px rgba(0,0,0,0.1);'>
|
| 422 |
-
<div style='display: flex; align-items: center;'>
|
| 423 |
-
<span style='color: #1a73e8; font-size: 18px; margin-right: 10px;'>✓</span>
|
| 424 |
-
<span>{suggestion}</span>
|
| 425 |
-
</div>
|
| 426 |
-
</li>
|
| 427 |
-
"""
|
| 428 |
-
|
| 429 |
-
if not suggestions:
|
| 430 |
-
html_content += """
|
| 431 |
-
<li style='margin-bottom: 10px; padding: 12px; background-color: white;
|
| 432 |
-
border-left: 4px solid #fbbc04; border-radius: 4px; box-shadow: 0 1px 2px rgba(0,0,0,0.1);'>
|
| 433 |
-
<div style='display: flex; align-items: center;'>
|
| 434 |
-
<span style='color: #fbbc04; font-size: 18px; margin-right: 10px;'>!</span>
|
| 435 |
-
<span>No specific feature engineering suggestions found for this dataset.</span>
|
| 436 |
-
</div>
|
| 437 |
-
</li>
|
| 438 |
-
"""
|
| 439 |
-
|
| 440 |
-
html_content += """
|
| 441 |
-
</ul>
|
| 442 |
-
</div>
|
| 443 |
-
"""
|
| 444 |
-
|
| 445 |
-
return html_content
|
| 446 |
-
|
| 447 |
-
@tool
|
| 448 |
-
def visualize_distributions(data: pd.DataFrame) -> str:
|
| 449 |
-
"""Create visualizations of numerical column distributions."""
|
| 450 |
-
# Access dataset from agent if no data provided
|
| 451 |
-
if data is None:
|
| 452 |
-
data = tool.agent.dataset
|
| 453 |
-
|
| 454 |
-
numeric_cols = data.select_dtypes(include=[np.number]).columns
|
| 455 |
-
|
| 456 |
-
if len(numeric_cols) == 0:
|
| 457 |
-
return "No numerical columns found in the dataset."
|
| 458 |
-
|
| 459 |
-
# Create HTML content with visualizations
|
| 460 |
-
html_content = "<div style='font-family: Inter, sans-serif;'>"
|
| 461 |
-
|
| 462 |
-
# Create a grid of histograms using plotly
|
| 463 |
-
fig = make_subplots(rows=len(numeric_cols), cols=1,
|
| 464 |
-
subplot_titles=numeric_cols,
|
| 465 |
-
vertical_spacing=0.05)
|
| 466 |
-
|
| 467 |
-
for i, col in enumerate(numeric_cols):
|
| 468 |
-
fig.add_trace(
|
| 469 |
-
go.Histogram(
|
| 470 |
-
x=data[col].dropna(),
|
| 471 |
-
name=col,
|
| 472 |
-
marker_color='#1a73e8',
|
| 473 |
-
opacity=0.7
|
| 474 |
-
),
|
| 475 |
-
row=i+1, col=1
|
| 476 |
-
)
|
| 477 |
-
|
| 478 |
-
fig.update_layout(
|
| 479 |
-
height=300 * len(numeric_cols),
|
| 480 |
-
width=800,
|
| 481 |
-
title_text="Distribution of Numerical Features",
|
| 482 |
-
showlegend=False,
|
| 483 |
-
font=dict(family="Inter, sans-serif"),
|
| 484 |
-
margin=dict(l=40, r=40, t=40, b=20),
|
| 485 |
-
)
|
| 486 |
-
|
| 487 |
-
html_content += fig.to_html(full_html=False, include_plotlyjs='cdn')
|
| 488 |
-
html_content += "</div>"
|
| 489 |
-
|
| 490 |
-
return html_content
|
| 491 |
-
|
| 492 |
-
def generate_deepmind_logo():
|
| 493 |
-
"""Generate a placeholder logo similar to DeepMind's style."""
|
| 494 |
-
fig = go.Figure()
|
| 495 |
-
|
| 496 |
-
# Create simple geometric shapes for logo
|
| 497 |
-
fig.add_shape(
|
| 498 |
-
type="circle",
|
| 499 |
-
x0=0.3, y0=0.3, x1=0.7, y1=0.7,
|
| 500 |
-
line=dict(color="#1a73e8", width=3),
|
| 501 |
-
fillcolor="rgba(26, 115, 232, 0.2)",
|
| 502 |
-
)
|
| 503 |
-
|
| 504 |
-
fig.add_shape(
|
| 505 |
-
type="circle",
|
| 506 |
-
x0=0.4, y0=0.4, x1=0.6, y1=0.6,
|
| 507 |
-
line=dict(color="#1a73e8", width=2),
|
| 508 |
-
fillcolor="rgba(26, 115, 232, 0.4)",
|
| 509 |
-
)
|
| 510 |
-
|
| 511 |
-
fig.update_layout(
|
| 512 |
-
width=180,
|
| 513 |
-
height=60,
|
| 514 |
-
paper_bgcolor='rgba(0,0,0,0)',
|
| 515 |
-
plot_bgcolor='rgba(0,0,0,0)',
|
| 516 |
-
margin=dict(l=0, r=0, t=0, b=0),
|
| 517 |
-
showlegend=False,
|
| 518 |
-
xaxis=dict(showgrid=False, zeroline=False, visible=False),
|
| 519 |
-
yaxis=dict(showgrid=False, zeroline=False, visible=False),
|
| 520 |
-
)
|
| 521 |
-
|
| 522 |
-
return fig.to_html(full_html=False, include_plotlyjs='cdn')
|
| 523 |
|
| 524 |
def main():
|
| 525 |
-
|
| 526 |
-
st.
|
| 527 |
-
<div class="logo-container">
|
| 528 |
-
<div class="logo">
|
| 529 |
-
<svg width="180" height="60" viewBox="0 0 180 60" fill="none" xmlns="http://www.w3.org/2000/svg">
|
| 530 |
-
<circle cx="30" cy="30" r="20" fill="#1a73e8" opacity="0.2" stroke="#1a73e8" stroke-width="2"/>
|
| 531 |
-
<circle cx="30" cy="30" r="10" fill="#1a73e8" opacity="0.4" stroke="#1a73e8" stroke-width="1.5"/>
|
| 532 |
-
<text x="60" y="35" font-family="Inter, sans-serif" font-size="18" font-weight="700" fill="#202124">Data Analysis</text>
|
| 533 |
-
</svg>
|
| 534 |
-
</div>
|
| 535 |
-
</div>
|
| 536 |
-
<h1 class="main-header">Data Analysis Assistant</h1>
|
| 537 |
-
<p class="sub-header">Upload your dataset and get intelligent insights with AI-powered analysis</p>
|
| 538 |
-
""", unsafe_allow_html=True)
|
| 539 |
|
| 540 |
# Initialize session state
|
| 541 |
if 'data' not in st.session_state:
|
| 542 |
st.session_state['data'] = None
|
| 543 |
if 'agent' not in st.session_state:
|
| 544 |
st.session_state['agent'] = None
|
| 545 |
-
if 'analysis_results' not in st.session_state:
|
| 546 |
-
st.session_state['analysis_results'] = None
|
| 547 |
|
| 548 |
-
|
| 549 |
-
col1, col2 = st.columns([1, 3])
|
| 550 |
|
| 551 |
-
|
| 552 |
-
st.markdown('<div class="card">', unsafe_allow_html=True)
|
| 553 |
-
st.markdown('<div class="card-title">Upload Dataset</div>', unsafe_allow_html=True)
|
| 554 |
-
|
| 555 |
-
# File uploader with custom styling
|
| 556 |
-
uploaded_file = st.file_uploader("", type="csv")
|
| 557 |
-
|
| 558 |
if uploaded_file is not None:
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
st.session_state['data'] = data
|
| 564 |
-
|
| 565 |
-
# Initialize the agent with the dataset
|
| 566 |
-
st.session_state['agent'] = DataAnalysisAgent(
|
| 567 |
-
dataset=data,
|
| 568 |
-
tools=[analyze_basic_stats, generate_correlation_matrix,
|
| 569 |
-
analyze_categorical_columns, suggest_features,
|
| 570 |
-
visualize_distributions],
|
| 571 |
-
model=GroqLLM(),
|
| 572 |
-
additional_authorized_imports=["pandas", "numpy", "matplotlib",
|
| 573 |
-
"seaborn", "plotly"]
|
| 574 |
-
)
|
| 575 |
-
|
| 576 |
-
# Display dataset statistics
|
| 577 |
-
st.markdown("""
|
| 578 |
-
<div style="background-color: #e6f4ea; padding: 10px; border-radius: 4px; margin-top: 10px;">
|
| 579 |
-
<div style="display: flex; align-items: center;">
|
| 580 |
-
<span style="color: #34a853; font-size: 20px; margin-right: 10px;">✓</span>
|
| 581 |
-
<span style="color: #34a853; font-weight: 500;">Dataset loaded successfully</span>
|
| 582 |
-
</div>
|
| 583 |
-
</div>
|
| 584 |
-
""", unsafe_allow_html=True)
|
| 585 |
-
|
| 586 |
-
col1, col2 = st.columns(2)
|
| 587 |
-
with col1:
|
| 588 |
-
st.markdown(f"""
|
| 589 |
-
<div class="metric-card">
|
| 590 |
-
<div class="metric-value">{data.shape[0]:,}</div>
|
| 591 |
-
<div class="metric-label">Rows</div>
|
| 592 |
-
</div>
|
| 593 |
-
""", unsafe_allow_html=True)
|
| 594 |
-
|
| 595 |
-
with col2:
|
| 596 |
-
st.markdown(f"""
|
| 597 |
-
<div class="metric-card">
|
| 598 |
-
<div class="metric-value">{data.shape[1]}</div>
|
| 599 |
-
<div class="metric-label">Columns</div>
|
| 600 |
-
</div>
|
| 601 |
-
""", unsafe_allow_html=True)
|
| 602 |
|
| 603 |
-
|
| 604 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 605 |
|
| 606 |
-
# Analysis type selection
|
| 607 |
if st.session_state['data'] is not None:
|
| 608 |
-
st.markdown('<div class="card-title" style="margin-top: 20px;">Analysis Tools</div>', unsafe_allow_html=True)
|
| 609 |
-
|
| 610 |
analysis_type = st.selectbox(
|
| 611 |
-
"
|
| 612 |
-
["
|
| 613 |
-
"
|
| 614 |
-
"Ask Your Own Question"]
|
| 615 |
)
|
| 616 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
| 617 |
-
|
| 618 |
-
# Main content area
|
| 619 |
-
with col2:
|
| 620 |
-
if st.session_state['data'] is not None:
|
| 621 |
-
# Data preview tab
|
| 622 |
-
st.markdown('<div class="card">', unsafe_allow_html=True)
|
| 623 |
-
st.markdown('<div class="card-title">Data Preview</div>', unsafe_allow_html=True)
|
| 624 |
-
|
| 625 |
-
# Add tabs for different data views
|
| 626 |
-
data_tabs = st.tabs(["Data Sample", "Column Info", "Missing Values"])
|
| 627 |
-
|
| 628 |
-
with data_tabs[0]:
|
| 629 |
-
st.markdown('<div class="dataframe-container">', unsafe_allow_html=True)
|
| 630 |
-
st.dataframe(st.session_state['data'].head(10), use_container_width=True)
|
| 631 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
| 632 |
-
|
| 633 |
-
with data_tabs[1]:
|
| 634 |
-
col1, col2, col3 = st.columns(3)
|
| 635 |
-
with col1:
|
| 636 |
-
st.markdown("**Column Names**")
|
| 637 |
-
st.write(st.session_state['data'].columns.tolist())
|
| 638 |
-
with col2:
|
| 639 |
-
st.markdown("**Data Types**")
|
| 640 |
-
for col, dtype in st.session_state['data'].dtypes.items():
|
| 641 |
-
st.write(f"{col}: {dtype}")
|
| 642 |
-
with col3:
|
| 643 |
-
st.markdown("**Non-Null Count**")
|
| 644 |
-
for col, count in st.session_state['data'].count().items():
|
| 645 |
-
st.write(f"{col}: {count}/{len(st.session_state['data'])}")
|
| 646 |
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
|
| 652 |
-
'Missing Values': missing_data.values,
|
| 653 |
-
'Percentage': round(missing_data.values / len(st.session_state['data']) * 100, 2)
|
| 654 |
-
})
|
| 655 |
-
missing_df = missing_df[missing_df['Missing Values'] > 0].sort_values('Missing Values', ascending=False)
|
| 656 |
-
st.dataframe(missing_df, use_container_width=True)
|
| 657 |
-
|
| 658 |
-
# Add a visualization of missing values
|
| 659 |
-
fig = px.bar(
|
| 660 |
-
missing_df,
|
| 661 |
-
x='Column',
|
| 662 |
-
y='Percentage',
|
| 663 |
-
color='Percentage',
|
| 664 |
-
color_continuous_scale='Blues',
|
| 665 |
-
title='Missing Values by Column (%)'
|
| 666 |
-
)
|
| 667 |
-
fig.update_layout(
|
| 668 |
-
xaxis_title='',
|
| 669 |
-
yaxis_title='Missing Values (%)',
|
| 670 |
-
height=400
|
| 671 |
)
|
| 672 |
-
st.
|
| 673 |
-
else:
|
| 674 |
-
st.success("No missing values in the dataset!")
|
| 675 |
|
| 676 |
-
|
| 677 |
-
|
| 678 |
-
|
| 679 |
-
|
| 680 |
-
|
| 681 |
-
|
| 682 |
-
|
| 683 |
-
|
| 684 |
-
|
| 685 |
-
|
| 686 |
-
with col1:
|
| 687 |
-
st.markdown("### Dataset Summary")
|
| 688 |
-
st.dataframe(st.session_state['data'].describe(), use_container_width=True)
|
| 689 |
|
| 690 |
-
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
|
| 695 |
-
|
| 696 |
-
|
| 697 |
-
values=[numeric_count, categorical_count],
|
| 698 |
-
names=['Numeric', 'Categorical'],
|
| 699 |
-
color_discrete_sequence=['#1a73e8', '#34a853'],
|
| 700 |
-
hole=0.4
|
| 701 |
-
)
|
| 702 |
-
fig.update_layout(
|
| 703 |
-
title='Column Types',
|
| 704 |
-
font=dict(family="Inter, sans-serif"),
|
| 705 |
-
legend=dict(orientation="h", yanchor="bottom", y=-0.2, xanchor="center", x=0.5)
|
| 706 |
-
)
|
| 707 |
-
st.plotly_chart(fig, use_container_width=True)
|
| 708 |
-
|
| 709 |
-
elif analysis_type == "Basic Statistics":
|
| 710 |
-
with st.spinner('Analyzing basic statistics...'):
|
| 711 |
-
result = st.session_state['agent'].run(
|
| 712 |
-
"Use the analyze_basic_stats tool to analyze this dataset and "
|
| 713 |
-
"provide insights about the numerical distributions."
|
| 714 |
-
)
|
| 715 |
-
|
| 716 |
-
# Parse the string representation of the dictionary
|
| 717 |
-
try:
|
| 718 |
-
# Remove the literal 'str' prefix if present
|
| 719 |
-
if result.startswith("str("):
|
| 720 |
-
result = result[4:-1]
|
| 721 |
-
|
| 722 |
-
# Convert string to dict
|
| 723 |
-
import ast
|
| 724 |
-
stats_dict = ast.literal_eval(result)
|
| 725 |
-
|
| 726 |
-
# Display results in a more visual format
|
| 727 |
-
for col, stats in stats_dict.items():
|
| 728 |
-
st.markdown(f"### {col}")
|
| 729 |
-
|
| 730 |
-
# Create metrics in columns
|
| 731 |
-
col1, col2, col3, col4 = st.columns(4)
|
| 732 |
-
|
| 733 |
-
with col1:
|
| 734 |
-
st.metric("Mean", f"{stats['mean']:.2f}")
|
| 735 |
-
with col2:
|
| 736 |
-
st.metric("Median", f"{stats['median']:.2f}")
|
| 737 |
-
with col3:
|
| 738 |
-
st.metric("Std Dev", f"{stats['std']:.2f}")
|
| 739 |
-
with col4:
|
| 740 |
-
st.metric("Skewness", f"{stats['skew']:.2f}")
|
| 741 |
-
|
| 742 |
-
# Create a boxplot for this column
|
| 743 |
-
fig = px.box(
|
| 744 |
-
st.session_state['data'],
|
| 745 |
-
y=col,
|
| 746 |
-
points="all",
|
| 747 |
-
color_discrete_sequence=['#1a73e8'],
|
| 748 |
-
title=f"Distribution of {col}"
|
| 749 |
-
)
|
| 750 |
-
fig.update_layout(
|
| 751 |
-
height=300,
|
| 752 |
-
margin=dict(t=40, b=20, l=40, r=20),
|
| 753 |
-
font=dict(family="Inter, sans-serif")
|
| 754 |
-
)
|
| 755 |
-
st.plotly_chart(fig, use_container_width=True)
|
| 756 |
-
|
| 757 |
-
st.markdown("---")
|
| 758 |
-
|
| 759 |
-
except Exception as e:
|
| 760 |
-
st.write(result)
|
| 761 |
-
|
| 762 |
-
elif analysis_type == "Feature Correlations":
|
| 763 |
-
with st.spinner('Analyzing feature correlations...'):
|
| 764 |
-
result = st.session_state['agent'].run(
|
| 765 |
-
"Use the generate_correlation_matrix tool to analyze correlations "
|
| 766 |
-
"and explain any strong relationships found."
|
| 767 |
-
)
|
| 768 |
-
|
| 769 |
-
# If the result is HTML, display it directly
|
| 770 |
-
if isinstance(result, str) and ("<div" in result or "<html" in result):
|
| 771 |
-
st.components.v1.html(result, height=650)
|
| 772 |
-
else:
|
| 773 |
-
st.write(result)
|
| 774 |
-
|
| 775 |
-
elif analysis_type == "Categorical Analysis":
|
| 776 |
-
with st.spinner('Analyzing categorical data...'):
|
| 777 |
-
result = st.session_state['agent'].run(
|
| 778 |
-
"Use the analyze_categorical_columns tool to analyze categorical data "
|
| 779 |
-
"and provide insights about distributions and frequencies."
|
| 780 |
-
)
|
| 781 |
-
|
| 782 |
-
# Display the HTML content
|
| 783 |
-
if isinstance(result, str) and ("<div" in result or "<html" in result):
|
| 784 |
-
st.components.v1.html(result, height=700)
|
| 785 |
-
else:
|
| 786 |
-
st.write(result)
|
| 787 |
-
|
| 788 |
-
elif analysis_type == "Feature Engineering":
|
| 789 |
-
with st.spinner('Analyzing feature engineering possibilities...'):
|
| 790 |
-
result = st.session_state['agent'].run(
|
| 791 |
-
"Use the suggest_features tool to identify potential feature engineering "
|
| 792 |
-
"steps that could improve model performance."
|
| 793 |
-
)
|
| 794 |
-
|
| 795 |
-
# Display the HTML content
|
| 796 |
-
if isinstance(result, str) and ("<div" in result or "<html" in result):
|
| 797 |
-
st.components.v1.html(result, height=500)
|
| 798 |
-
else:
|
| 799 |
-
st.write(result)
|
| 800 |
-
|
| 801 |
-
elif analysis_type == "Data Distributions":
|
| 802 |
-
with st.spinner('Analyzing data distributions...'):
|
| 803 |
-
result = st.session_state['agent'].run(
|
| 804 |
-
"Use the visualize_distributions tool to analyze the numerical distributions "
|
| 805 |
-
"and identify any unusual patterns or outliers."
|
| 806 |
-
)
|
| 807 |
-
|
| 808 |
-
# Display the HTML content
|
| 809 |
-
if isinstance(result, str) and ("<div" in result or "<html" in result):
|
| 810 |
-
st.components.v1.html(result, height=800)
|
| 811 |
-
else:
|
| 812 |
-
st.write(result)
|
| 813 |
-
|
| 814 |
-
elif analysis_type == "Ask Your Own Question":
|
| 815 |
-
# Free-form question input
|
| 816 |
-
user_question = st.text_area("What would you like to know about this dataset?",
|
| 817 |
-
"What are the key insights from this dataset?")
|
| 818 |
|
| 819 |
-
|
| 820 |
-
|
| 821 |
-
|
| 822 |
-
|
|
|
|
|
|
|
|
|
|
| 823 |
|
| 824 |
-
|
| 825 |
-
|
| 826 |
-
|
|
|
|
|
|
|
|
|
|
| 827 |
|
| 828 |
-
|
| 829 |
-
|
| 830 |
-
st.components.v1.html(st.session_state['analysis_results'], height=600)
|
| 831 |
-
else:
|
| 832 |
-
st.write(st.session_state['analysis_results'])
|
| 833 |
-
|
| 834 |
-
st.markdown('</div>', unsafe_allow_html=True)
|
| 835 |
-
|
| 836 |
-
else:
|
| 837 |
-
# Display welcome message for users who haven't uploaded data yet
|
| 838 |
-
st.markdown("""
|
| 839 |
-
<div class="card fade-in">
|
| 840 |
-
<div style="text-align: center; padding: 50px 20px;">
|
| 841 |
-
<svg width="80" height="80" viewBox="0 0 80 80" fill="none" xmlns="http://www.w3.org/2000/svg" style="margin-bottom: 20px;">
|
| 842 |
-
<circle cx="40" cy="40" r="30" fill="#1a73e8" opacity="0.2" stroke="#1a73e8" stroke-width="2"/>
|
| 843 |
-
<circle cx="40" cy="40" r="15" fill="#1a73e8" opacity="0.4" stroke="#1a73e8" stroke-width="1.5"/>
|
| 844 |
-
</svg>
|
| 845 |
-
<h2 style="color: #202124; margin-bottom: 15px;">Welcome to Data Analysis Assistant</h2>
|
| 846 |
-
<p style="color: #5f6368; font-size: 16px; max-width: 600px; margin: 0 auto 25px auto;">
|
| 847 |
-
Upload a CSV file to get started with instant insights and intelligent analysis.
|
| 848 |
-
Our AI-powered assistant will help you understand your data like never before.
|
| 849 |
-
</p>
|
| 850 |
-
</div>
|
| 851 |
-
|
| 852 |
-
<div style="display: flex; justify-content: center; flex-wrap: wrap; gap: 20px; margin-bottom: 30px;">
|
| 853 |
-
<div style="background-color: white; border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1); width: 200px; padding: 15px; text-align: center;">
|
| 854 |
-
<div style="color: #1a73e8; font-size: 24px; margin-bottom: 10px;">📊</div>
|
| 855 |
-
<h3 style="color: #202124; margin-bottom: 10px; font-size: 16px;">Automatic Visualizations</h3>
|
| 856 |
-
<p style="color: #5f6368; font-size: 14px;">Get instant charts and plots revealing insights in your data</p>
|
| 857 |
-
</div>
|
| 858 |
-
|
| 859 |
-
<div style="background-color: white; border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1); width: 200px; padding: 15px; text-align: center;">
|
| 860 |
-
<div style="color: #1a73e8; font-size: 24px; margin-bottom: 10px;">🧠</div>
|
| 861 |
-
<h3 style="color: #202124; margin-bottom: 10px; font-size: 16px;">AI-Powered Analysis</h3>
|
| 862 |
-
<p style="color: #5f6368; font-size: 14px;">Advanced algorithms find patterns and correlations automatically</p>
|
| 863 |
-
</div>
|
| 864 |
-
|
| 865 |
-
<div style="background-color: white; border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1); width: 200px; padding: 15px; text-align: center;">
|
| 866 |
-
<div style="color: #1a73e8; font-size: 24px; margin-bottom: 10px;">💡</div>
|
| 867 |
-
<h3 style="color: #202124; margin-bottom: 10px; font-size: 16px;">Smart Recommendations</h3>
|
| 868 |
-
<p style="color: #5f6368; font-size: 14px;">Get suggestions for feature engineering and data preparation</p>
|
| 869 |
-
</div>
|
| 870 |
-
</div>
|
| 871 |
-
</div>
|
| 872 |
-
""", unsafe_allow_html=True)
|
| 873 |
-
|
| 874 |
-
# Import for subplot creation
|
| 875 |
-
from plotly.subplots import make_subplots
|
| 876 |
|
| 877 |
if __name__ == "__main__":
|
| 878 |
-
|
| 879 |
-
if not os.environ.get("GROQ_API_KEY"):
|
| 880 |
-
st.error("""
|
| 881 |
-
GROQ API key not found! Please set your GROQ_API_KEY environment variable.
|
| 882 |
-
|
| 883 |
-
You can get an API key from https://console.groq.com/
|
| 884 |
-
""")
|
| 885 |
-
else:
|
| 886 |
-
main()
|
|
|
|
| 11 |
import tempfile
|
| 12 |
import base64
|
| 13 |
import io
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
class GroqLLM:
|
| 16 |
"""Compatible LLM interface for smolagents CodeAgent"""
|
|
|
|
| 76 |
|
| 77 |
@tool
|
| 78 |
def analyze_basic_stats(data: pd.DataFrame) -> str:
|
| 79 |
+
"""Calculate basic statistical measures for numerical columns in the dataset.
|
| 80 |
+
|
| 81 |
+
This function computes fundamental statistical metrics including mean, median,
|
| 82 |
+
standard deviation, skewness, and counts of missing values for all numerical
|
| 83 |
+
columns in the provided DataFrame.
|
| 84 |
+
|
| 85 |
+
Args:
|
| 86 |
+
data: A pandas DataFrame containing the dataset to analyze. The DataFrame
|
| 87 |
+
should contain at least one numerical column for meaningful analysis.
|
| 88 |
+
|
| 89 |
+
Returns:
|
| 90 |
+
str: A string containing formatted basic statistics for each numerical column,
|
| 91 |
+
including mean, median, standard deviation, skewness, and missing value counts.
|
| 92 |
+
"""
|
| 93 |
# Access dataset from agent if no data provided
|
| 94 |
if data is None:
|
| 95 |
data = tool.agent.dataset
|
|
|
|
| 110 |
|
| 111 |
@tool
|
| 112 |
def generate_correlation_matrix(data: pd.DataFrame) -> str:
|
| 113 |
+
"""Generate a visual correlation matrix for numerical columns in the dataset.
|
| 114 |
+
|
| 115 |
+
This function creates a heatmap visualization showing the correlations between
|
| 116 |
+
all numerical columns in the dataset. The correlation values are displayed
|
| 117 |
+
using a color-coded matrix for easy interpretation.
|
| 118 |
+
|
| 119 |
+
Args:
|
| 120 |
+
data: A pandas DataFrame containing the dataset to analyze. The DataFrame
|
| 121 |
+
should contain at least two numerical columns for correlation analysis.
|
| 122 |
+
|
| 123 |
+
Returns:
|
| 124 |
+
str: A base64 encoded string representing the correlation matrix plot image,
|
| 125 |
+
which can be displayed in a web interface or saved as an image file.
|
| 126 |
+
"""
|
| 127 |
# Access dataset from agent if no data provided
|
| 128 |
if data is None:
|
| 129 |
data = tool.agent.dataset
|
| 130 |
|
| 131 |
numeric_data = data.select_dtypes(include=[np.number])
|
| 132 |
|
| 133 |
+
plt.figure(figsize=(10, 8))
|
| 134 |
+
sns.heatmap(numeric_data.corr(), annot=True, cmap='coolwarm')
|
| 135 |
+
plt.title('Correlation Matrix')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
+
buf = io.BytesIO()
|
| 138 |
+
plt.savefig(buf, format='png')
|
| 139 |
+
plt.close()
|
| 140 |
+
return base64.b64encode(buf.getvalue()).decode()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
@tool
|
| 143 |
def analyze_categorical_columns(data: pd.DataFrame) -> str:
|
| 144 |
+
"""Analyze categorical columns in the dataset for distribution and frequencies.
|
| 145 |
+
|
| 146 |
+
This function examines categorical columns to identify unique values, top categories,
|
| 147 |
+
and missing value counts, providing insights into the categorical data distribution.
|
| 148 |
+
|
| 149 |
+
Args:
|
| 150 |
+
data: A pandas DataFrame containing the dataset to analyze. The DataFrame
|
| 151 |
+
should contain at least one categorical column for meaningful analysis.
|
| 152 |
+
|
| 153 |
+
Returns:
|
| 154 |
+
str: A string containing formatted analysis results for each categorical column,
|
| 155 |
+
including unique value counts, top categories, and missing value counts.
|
| 156 |
+
"""
|
| 157 |
# Access dataset from agent if no data provided
|
| 158 |
if data is None:
|
| 159 |
data = tool.agent.dataset
|
|
|
|
| 168 |
'missing': int(data[col].isnull().sum())
|
| 169 |
}
|
| 170 |
|
| 171 |
+
return str(analysis)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
@tool
|
| 174 |
def suggest_features(data: pd.DataFrame) -> str:
|
| 175 |
+
"""Suggest potential feature engineering steps based on data characteristics.
|
| 176 |
+
|
| 177 |
+
This function analyzes the dataset's structure and statistical properties to
|
| 178 |
+
recommend possible feature engineering steps that could improve model performance.
|
| 179 |
+
|
| 180 |
+
Args:
|
| 181 |
+
data: A pandas DataFrame containing the dataset to analyze. The DataFrame
|
| 182 |
+
can contain both numerical and categorical columns.
|
| 183 |
+
|
| 184 |
+
Returns:
|
| 185 |
+
str: A string containing suggestions for feature engineering based on
|
| 186 |
+
the characteristics of the input data.
|
| 187 |
+
"""
|
| 188 |
# Access dataset from agent if no data provided
|
| 189 |
if data is None:
|
| 190 |
data = tool.agent.dataset
|
|
|
|
| 203 |
if data[col].skew() > 1 or data[col].skew() < -1:
|
| 204 |
suggestions.append(f"Consider log transformation for {col} due to skewness")
|
| 205 |
|
| 206 |
+
return '\n'.join(suggestions)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
|
| 208 |
def main():
|
| 209 |
+
st.title("Data Analysis Assistant")
|
| 210 |
+
st.write("Upload your dataset and get automated analysis with natural language interaction.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 211 |
|
| 212 |
# Initialize session state
|
| 213 |
if 'data' not in st.session_state:
|
| 214 |
st.session_state['data'] = None
|
| 215 |
if 'agent' not in st.session_state:
|
| 216 |
st.session_state['agent'] = None
|
|
|
|
|
|
|
| 217 |
|
| 218 |
+
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
|
|
|
| 219 |
|
| 220 |
+
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
if uploaded_file is not None:
|
| 222 |
+
with st.spinner('Loading and processing your data...'):
|
| 223 |
+
# Load the dataset
|
| 224 |
+
data = pd.read_csv(uploaded_file)
|
| 225 |
+
st.session_state['data'] = data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
|
| 227 |
+
# Initialize the agent with the dataset
|
| 228 |
+
st.session_state['agent'] = DataAnalysisAgent(
|
| 229 |
+
dataset=data,
|
| 230 |
+
tools=[analyze_basic_stats, generate_correlation_matrix,
|
| 231 |
+
analyze_categorical_columns, suggest_features],
|
| 232 |
+
model=GroqLLM(),
|
| 233 |
+
additional_authorized_imports=["pandas", "numpy", "matplotlib", "seaborn"]
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
st.success(f'Successfully loaded dataset with {data.shape[0]} rows and {data.shape[1]} columns')
|
| 237 |
+
st.subheader("Data Preview")
|
| 238 |
+
st.dataframe(data.head())
|
| 239 |
|
|
|
|
| 240 |
if st.session_state['data'] is not None:
|
|
|
|
|
|
|
| 241 |
analysis_type = st.selectbox(
|
| 242 |
+
"Choose analysis type",
|
| 243 |
+
["Basic Statistics", "Correlation Analysis", "Categorical Analysis",
|
| 244 |
+
"Feature Engineering", "Custom Question"]
|
|
|
|
| 245 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
|
| 247 |
+
if analysis_type == "Basic Statistics":
|
| 248 |
+
with st.spinner('Analyzing basic statistics...'):
|
| 249 |
+
result = st.session_state['agent'].run(
|
| 250 |
+
"Use the analyze_basic_stats tool to analyze this dataset and "
|
| 251 |
+
"provide insights about the numerical distributions."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
)
|
| 253 |
+
st.write(result)
|
|
|
|
|
|
|
| 254 |
|
| 255 |
+
elif analysis_type == "Correlation Analysis":
|
| 256 |
+
with st.spinner('Generating correlation matrix...'):
|
| 257 |
+
result = st.session_state['agent'].run(
|
| 258 |
+
"Use the generate_correlation_matrix tool to analyze correlations "
|
| 259 |
+
"and explain any strong relationships found."
|
| 260 |
+
)
|
| 261 |
+
if isinstance(result, str) and result.startswith('data:image') or ',' in result:
|
| 262 |
+
st.image(f"data:image/png;base64,{result.split(',')[-1]}")
|
| 263 |
+
else:
|
| 264 |
+
st.write(result)
|
|
|
|
|
|
|
|
|
|
| 265 |
|
| 266 |
+
elif analysis_type == "Categorical Analysis":
|
| 267 |
+
with st.spinner('Analyzing categorical columns...'):
|
| 268 |
+
result = st.session_state['agent'].run(
|
| 269 |
+
"Use the analyze_categorical_columns tool to examine the "
|
| 270 |
+
"categorical variables and explain the distributions."
|
| 271 |
+
)
|
| 272 |
+
st.write(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
|
| 274 |
+
elif analysis_type == "Feature Engineering":
|
| 275 |
+
with st.spinner('Generating feature suggestions...'):
|
| 276 |
+
result = st.session_state['agent'].run(
|
| 277 |
+
"Use the suggest_features tool to recommend potential "
|
| 278 |
+
"feature engineering steps for this dataset."
|
| 279 |
+
)
|
| 280 |
+
st.write(result)
|
| 281 |
|
| 282 |
+
elif analysis_type == "Custom Question":
|
| 283 |
+
question = st.text_input("What would you like to know about your data?")
|
| 284 |
+
if question:
|
| 285 |
+
with st.spinner('Analyzing...'):
|
| 286 |
+
result = st.session_state['agent'].run(question)
|
| 287 |
+
st.write(result)
|
| 288 |
|
| 289 |
+
except Exception as e:
|
| 290 |
+
st.error(f"An error occurred: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
|
| 292 |
if __name__ == "__main__":
|
| 293 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|