Spaces:
Running
Running
Delete src
Browse files- src/streamlit_app.py +0 -293
src/streamlit_app.py
DELETED
@@ -1,293 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
-
from smolagents import CodeAgent, tool
|
5 |
-
from typing import Union, List, Dict, Optional
|
6 |
-
import matplotlib.pyplot as plt
|
7 |
-
import seaborn as sns
|
8 |
-
import os
|
9 |
-
from groq import Groq
|
10 |
-
from dataclasses import dataclass
|
11 |
-
import tempfile
|
12 |
-
import base64
|
13 |
-
import io
|
14 |
-
|
15 |
-
class GroqLLM:
|
16 |
-
"""Compatible LLM interface for smolagents CodeAgent"""
|
17 |
-
def __init__(self, model_name="llama-3.1-8B-Instant"):
|
18 |
-
self.client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
19 |
-
self.model_name = model_name
|
20 |
-
|
21 |
-
def __call__(self, prompt: Union[str, dict, List[Dict]]) -> str:
|
22 |
-
"""Make the class callable as required by smolagents"""
|
23 |
-
try:
|
24 |
-
# Handle different prompt formats
|
25 |
-
if isinstance(prompt, (dict, list)):
|
26 |
-
prompt_str = str(prompt)
|
27 |
-
else:
|
28 |
-
prompt_str = str(prompt)
|
29 |
-
|
30 |
-
# Create a properly formatted message
|
31 |
-
completion = self.client.chat.completions.create(
|
32 |
-
model=self.model_name,
|
33 |
-
messages=[{
|
34 |
-
"role": "user",
|
35 |
-
"content": prompt_str
|
36 |
-
}],
|
37 |
-
temperature=0.7,
|
38 |
-
max_tokens=1024,
|
39 |
-
stream=False
|
40 |
-
)
|
41 |
-
|
42 |
-
return completion.choices[0].message.content if completion.choices else "Error: No response generated"
|
43 |
-
|
44 |
-
except Exception as e:
|
45 |
-
error_msg = f"Error generating response: {str(e)}"
|
46 |
-
print(error_msg)
|
47 |
-
return error_msg
|
48 |
-
|
49 |
-
class DataAnalysisAgent(CodeAgent):
|
50 |
-
"""Extended CodeAgent with dataset awareness"""
|
51 |
-
def __init__(self, dataset: pd.DataFrame, *args, **kwargs):
|
52 |
-
super().__init__(*args, **kwargs)
|
53 |
-
self._dataset = dataset
|
54 |
-
|
55 |
-
@property
|
56 |
-
def dataset(self) -> pd.DataFrame:
|
57 |
-
"""Access the stored dataset"""
|
58 |
-
return self._dataset
|
59 |
-
|
60 |
-
def run(self, prompt: str) -> str:
|
61 |
-
"""Override run method to include dataset context"""
|
62 |
-
dataset_info = f"""
|
63 |
-
Dataset Shape: {self.dataset.shape}
|
64 |
-
Columns: {', '.join(self.dataset.columns)}
|
65 |
-
Data Types: {self.dataset.dtypes.to_dict()}
|
66 |
-
"""
|
67 |
-
enhanced_prompt = f"""
|
68 |
-
Analyze the following dataset:
|
69 |
-
{dataset_info}
|
70 |
-
|
71 |
-
Task: {prompt}
|
72 |
-
|
73 |
-
Use the provided tools to analyze this specific dataset and return detailed results.
|
74 |
-
"""
|
75 |
-
return super().run(enhanced_prompt)
|
76 |
-
|
77 |
-
@tool
|
78 |
-
def analyze_basic_stats(data: pd.DataFrame) -> str:
|
79 |
-
"""Calculate basic statistical measures for numerical columns in the dataset.
|
80 |
-
|
81 |
-
This function computes fundamental statistical metrics including mean, median,
|
82 |
-
standard deviation, skewness, and counts of missing values for all numerical
|
83 |
-
columns in the provided DataFrame.
|
84 |
-
|
85 |
-
Args:
|
86 |
-
data: A pandas DataFrame containing the dataset to analyze. The DataFrame
|
87 |
-
should contain at least one numerical column for meaningful analysis.
|
88 |
-
|
89 |
-
Returns:
|
90 |
-
str: A string containing formatted basic statistics for each numerical column,
|
91 |
-
including mean, median, standard deviation, skewness, and missing value counts.
|
92 |
-
"""
|
93 |
-
# Access dataset from agent if no data provided
|
94 |
-
if data is None:
|
95 |
-
data = tool.agent.dataset
|
96 |
-
|
97 |
-
stats = {}
|
98 |
-
numeric_cols = data.select_dtypes(include=[np.number]).columns
|
99 |
-
|
100 |
-
for col in numeric_cols:
|
101 |
-
stats[col] = {
|
102 |
-
'mean': float(data[col].mean()),
|
103 |
-
'median': float(data[col].median()),
|
104 |
-
'std': float(data[col].std()),
|
105 |
-
'skew': float(data[col].skew()),
|
106 |
-
'missing': int(data[col].isnull().sum())
|
107 |
-
}
|
108 |
-
|
109 |
-
return str(stats)
|
110 |
-
|
111 |
-
@tool
|
112 |
-
def generate_correlation_matrix(data: pd.DataFrame) -> str:
|
113 |
-
"""Generate a visual correlation matrix for numerical columns in the dataset.
|
114 |
-
|
115 |
-
This function creates a heatmap visualization showing the correlations between
|
116 |
-
all numerical columns in the dataset. The correlation values are displayed
|
117 |
-
using a color-coded matrix for easy interpretation.
|
118 |
-
|
119 |
-
Args:
|
120 |
-
data: A pandas DataFrame containing the dataset to analyze. The DataFrame
|
121 |
-
should contain at least two numerical columns for correlation analysis.
|
122 |
-
|
123 |
-
Returns:
|
124 |
-
str: A base64 encoded string representing the correlation matrix plot image,
|
125 |
-
which can be displayed in a web interface or saved as an image file.
|
126 |
-
"""
|
127 |
-
# Access dataset from agent if no data provided
|
128 |
-
if data is None:
|
129 |
-
data = tool.agent.dataset
|
130 |
-
|
131 |
-
numeric_data = data.select_dtypes(include=[np.number])
|
132 |
-
|
133 |
-
plt.figure(figsize=(10, 8))
|
134 |
-
sns.heatmap(numeric_data.corr(), annot=True, cmap='coolwarm')
|
135 |
-
plt.title('Correlation Matrix')
|
136 |
-
|
137 |
-
buf = io.BytesIO()
|
138 |
-
plt.savefig(buf, format='png')
|
139 |
-
plt.close()
|
140 |
-
return base64.b64encode(buf.getvalue()).decode()
|
141 |
-
|
142 |
-
@tool
|
143 |
-
def analyze_categorical_columns(data: pd.DataFrame) -> str:
|
144 |
-
"""Analyze categorical columns in the dataset for distribution and frequencies.
|
145 |
-
|
146 |
-
This function examines categorical columns to identify unique values, top categories,
|
147 |
-
and missing value counts, providing insights into the categorical data distribution.
|
148 |
-
|
149 |
-
Args:
|
150 |
-
data: A pandas DataFrame containing the dataset to analyze. The DataFrame
|
151 |
-
should contain at least one categorical column for meaningful analysis.
|
152 |
-
|
153 |
-
Returns:
|
154 |
-
str: A string containing formatted analysis results for each categorical column,
|
155 |
-
including unique value counts, top categories, and missing value counts.
|
156 |
-
"""
|
157 |
-
# Access dataset from agent if no data provided
|
158 |
-
if data is None:
|
159 |
-
data = tool.agent.dataset
|
160 |
-
|
161 |
-
categorical_cols = data.select_dtypes(include=['object', 'category']).columns
|
162 |
-
analysis = {}
|
163 |
-
|
164 |
-
for col in categorical_cols:
|
165 |
-
analysis[col] = {
|
166 |
-
'unique_values': int(data[col].nunique()),
|
167 |
-
'top_categories': data[col].value_counts().head(5).to_dict(),
|
168 |
-
'missing': int(data[col].isnull().sum())
|
169 |
-
}
|
170 |
-
|
171 |
-
return str(analysis)
|
172 |
-
|
173 |
-
@tool
|
174 |
-
def suggest_features(data: pd.DataFrame) -> str:
|
175 |
-
"""Suggest potential feature engineering steps based on data characteristics.
|
176 |
-
|
177 |
-
This function analyzes the dataset's structure and statistical properties to
|
178 |
-
recommend possible feature engineering steps that could improve model performance.
|
179 |
-
|
180 |
-
Args:
|
181 |
-
data: A pandas DataFrame containing the dataset to analyze. The DataFrame
|
182 |
-
can contain both numerical and categorical columns.
|
183 |
-
|
184 |
-
Returns:
|
185 |
-
str: A string containing suggestions for feature engineering based on
|
186 |
-
the characteristics of the input data.
|
187 |
-
"""
|
188 |
-
# Access dataset from agent if no data provided
|
189 |
-
if data is None:
|
190 |
-
data = tool.agent.dataset
|
191 |
-
|
192 |
-
suggestions = []
|
193 |
-
numeric_cols = data.select_dtypes(include=[np.number]).columns
|
194 |
-
categorical_cols = data.select_dtypes(include=['object', 'category']).columns
|
195 |
-
|
196 |
-
if len(numeric_cols) >= 2:
|
197 |
-
suggestions.append("Consider creating interaction terms between numerical features")
|
198 |
-
|
199 |
-
if len(categorical_cols) > 0:
|
200 |
-
suggestions.append("Consider one-hot encoding for categorical variables")
|
201 |
-
|
202 |
-
for col in numeric_cols:
|
203 |
-
if data[col].skew() > 1 or data[col].skew() < -1:
|
204 |
-
suggestions.append(f"Consider log transformation for {col} due to skewness")
|
205 |
-
|
206 |
-
return '\n'.join(suggestions)
|
207 |
-
|
208 |
-
def main():
|
209 |
-
st.title("Data Analysis Assistant")
|
210 |
-
st.write("Upload your dataset and get automated analysis with natural language interaction.")
|
211 |
-
|
212 |
-
# Initialize session state
|
213 |
-
if 'data' not in st.session_state:
|
214 |
-
st.session_state['data'] = None
|
215 |
-
if 'agent' not in st.session_state:
|
216 |
-
st.session_state['agent'] = None
|
217 |
-
|
218 |
-
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
219 |
-
|
220 |
-
try:
|
221 |
-
if uploaded_file is not None:
|
222 |
-
with st.spinner('Loading and processing your data...'):
|
223 |
-
# Load the dataset
|
224 |
-
data = pd.read_csv(uploaded_file)
|
225 |
-
st.session_state['data'] = data
|
226 |
-
|
227 |
-
# Initialize the agent with the dataset
|
228 |
-
st.session_state['agent'] = DataAnalysisAgent(
|
229 |
-
dataset=data,
|
230 |
-
tools=[analyze_basic_stats, generate_correlation_matrix,
|
231 |
-
analyze_categorical_columns, suggest_features],
|
232 |
-
model=GroqLLM(),
|
233 |
-
additional_authorized_imports=["pandas", "numpy", "matplotlib", "seaborn"]
|
234 |
-
)
|
235 |
-
|
236 |
-
st.success(f'Successfully loaded dataset with {data.shape[0]} rows and {data.shape[1]} columns')
|
237 |
-
st.subheader("Data Preview")
|
238 |
-
st.dataframe(data.head())
|
239 |
-
|
240 |
-
if st.session_state['data'] is not None:
|
241 |
-
analysis_type = st.selectbox(
|
242 |
-
"Choose analysis type",
|
243 |
-
["Basic Statistics", "Correlation Analysis", "Categorical Analysis",
|
244 |
-
"Feature Engineering", "Custom Question"]
|
245 |
-
)
|
246 |
-
|
247 |
-
if analysis_type == "Basic Statistics":
|
248 |
-
with st.spinner('Analyzing basic statistics...'):
|
249 |
-
result = st.session_state['agent'].run(
|
250 |
-
"Use the analyze_basic_stats tool to analyze this dataset and "
|
251 |
-
"provide insights about the numerical distributions."
|
252 |
-
)
|
253 |
-
st.write(result)
|
254 |
-
|
255 |
-
elif analysis_type == "Correlation Analysis":
|
256 |
-
with st.spinner('Generating correlation matrix...'):
|
257 |
-
result = st.session_state['agent'].run(
|
258 |
-
"Use the generate_correlation_matrix tool to analyze correlations "
|
259 |
-
"and explain any strong relationships found."
|
260 |
-
)
|
261 |
-
if isinstance(result, str) and result.startswith('data:image') or ',' in result:
|
262 |
-
st.image(f"data:image/png;base64,{result.split(',')[-1]}")
|
263 |
-
else:
|
264 |
-
st.write(result)
|
265 |
-
|
266 |
-
elif analysis_type == "Categorical Analysis":
|
267 |
-
with st.spinner('Analyzing categorical columns...'):
|
268 |
-
result = st.session_state['agent'].run(
|
269 |
-
"Use the analyze_categorical_columns tool to examine the "
|
270 |
-
"categorical variables and explain the distributions."
|
271 |
-
)
|
272 |
-
st.write(result)
|
273 |
-
|
274 |
-
elif analysis_type == "Feature Engineering":
|
275 |
-
with st.spinner('Generating feature suggestions...'):
|
276 |
-
result = st.session_state['agent'].run(
|
277 |
-
"Use the suggest_features tool to recommend potential "
|
278 |
-
"feature engineering steps for this dataset."
|
279 |
-
)
|
280 |
-
st.write(result)
|
281 |
-
|
282 |
-
elif analysis_type == "Custom Question":
|
283 |
-
question = st.text_input("What would you like to know about your data?")
|
284 |
-
if question:
|
285 |
-
with st.spinner('Analyzing...'):
|
286 |
-
result = st.session_state['agent'].run(question)
|
287 |
-
st.write(result)
|
288 |
-
|
289 |
-
except Exception as e:
|
290 |
-
st.error(f"An error occurred: {str(e)}")
|
291 |
-
|
292 |
-
if __name__ == "__main__":
|
293 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|