import streamlit as st import numpy as np import pandas as pd from smolagents import CodeAgent, tool from typing import Union, List, Dict, Optional import matplotlib.pyplot as plt import seaborn as sns import os from groq import Groq from dataclasses import dataclass import tempfile import base64 import io import plotly.express as px import plotly.graph_objects as go # Set page configuration st.set_page_config( page_title="Data Analysis Assistant", page_icon="📊", layout="wide", initial_sidebar_state="expanded" ) # Custom CSS for DeepMind-inspired styling st.markdown(""" """, unsafe_allow_html=True) class GroqLLM: """Compatible LLM interface for smolagents CodeAgent""" def __init__(self, model_name="llama-3.1-8B-Instant"): self.client = Groq(api_key=os.environ.get("GROQ_API_KEY")) self.model_name = model_name def __call__(self, prompt: Union[str, dict, List[Dict]]) -> str: """Make the class callable as required by smolagents""" try: # Handle different prompt formats if isinstance(prompt, (dict, list)): prompt_str = str(prompt) else: prompt_str = str(prompt) # Create a properly formatted message completion = self.client.chat.completions.create( model=self.model_name, messages=[{ "role": "user", "content": prompt_str }], temperature=0.7, max_tokens=1024, stream=False ) return completion.choices[0].message.content if completion.choices else "Error: No response generated" except Exception as e: error_msg = f"Error generating response: {str(e)}" print(error_msg) return error_msg class DataAnalysisAgent(CodeAgent): """Extended CodeAgent with dataset awareness""" def __init__(self, dataset: pd.DataFrame, *args, **kwargs): super().__init__(*args, **kwargs) self._dataset = dataset @property def dataset(self) -> pd.DataFrame: """Access the stored dataset""" return self._dataset def run(self, prompt: str) -> str: """Override run method to include dataset context""" dataset_info = f""" Dataset Shape: {self.dataset.shape} Columns: {', '.join(self.dataset.columns)} Data Types: {self.dataset.dtypes.to_dict()} """ enhanced_prompt = f""" Analyze the following dataset: {dataset_info} Task: {prompt} Use the provided tools to analyze this specific dataset and return detailed results. """ return super().run(enhanced_prompt) @tool def analyze_basic_stats(data: pd.DataFrame) -> str: """Calculate basic statistical measures for numerical columns in the dataset.""" # Access dataset from agent if no data provided if data is None: data = tool.agent.dataset stats = {} numeric_cols = data.select_dtypes(include=[np.number]).columns for col in numeric_cols: stats[col] = { 'mean': float(data[col].mean()), 'median': float(data[col].median()), 'std': float(data[col].std()), 'skew': float(data[col].skew()), 'missing': int(data[col].isnull().sum()) } return str(stats) @tool def generate_correlation_matrix(data: pd.DataFrame) -> str: """Generate a visual correlation matrix for numerical columns in the dataset.""" # Access dataset from agent if no data provided if data is None: data = tool.agent.dataset numeric_data = data.select_dtypes(include=[np.number]) # Using a modern Plotly heatmap instead of matplotlib fig = px.imshow( numeric_data.corr(), text_auto=True, aspect="auto", color_continuous_scale="Blues", title="Feature Correlation Matrix" ) fig.update_layout( height=600, width=800, font=dict(family="Inter, sans-serif"), plot_bgcolor="white", title_font=dict(size=20, color="#202124", family="Inter, sans-serif"), margin=dict(l=40, r=40, t=60, b=40), ) # Convert to HTML for display fig_html = fig.to_html(full_html=False, include_plotlyjs='cdn') return fig_html @tool def analyze_categorical_columns(data: pd.DataFrame) -> str: """Analyze categorical columns in the dataset for distribution and frequencies.""" # Access dataset from agent if no data provided if data is None: data = tool.agent.dataset categorical_cols = data.select_dtypes(include=['object', 'category']).columns analysis = {} for col in categorical_cols: analysis[col] = { 'unique_values': int(data[col].nunique()), 'top_categories': data[col].value_counts().head(5).to_dict(), 'missing': int(data[col].isnull().sum()) } # Create an HTML visualization of categorical data html_content = "
" for col, stats in analysis.items(): html_content += f"
" html_content += f"

{col}

" html_content += f"

Unique Values: {stats['unique_values']}

" html_content += f"

Missing Values: {stats['missing']}

" # Add bar chart for top categories if stats['top_categories']: categories = list(stats['top_categories'].keys()) values = list(stats['top_categories'].values()) fig = go.Figure() fig.add_trace(go.Bar( x=categories, y=values, marker_color='#1a73e8', hoverinfo='x+y' )) fig.update_layout( title=f"Top Categories for {col}", xaxis_title="Category", yaxis_title="Count", font=dict(family="Inter, sans-serif"), height=350, margin=dict(l=40, r=40, t=60, b=80), xaxis=dict(tickangle=-45) ) html_content += fig.to_html(full_html=False, include_plotlyjs='cdn') html_content += "
" html_content += "
" return html_content @tool def suggest_features(data: pd.DataFrame) -> str: """Suggest potential feature engineering steps based on data characteristics.""" # Access dataset from agent if no data provided if data is None: data = tool.agent.dataset suggestions = [] numeric_cols = data.select_dtypes(include=[np.number]).columns categorical_cols = data.select_dtypes(include=['object', 'category']).columns if len(numeric_cols) >= 2: suggestions.append("Consider creating interaction terms between numerical features") if len(categorical_cols) > 0: suggestions.append("Consider one-hot encoding for categorical variables") for col in numeric_cols: if data[col].skew() > 1 or data[col].skew() < -1: suggestions.append(f"Consider log transformation for {col} due to skewness") # Format as HTML for better display html_content = """

Feature Engineering Suggestions

""" return html_content @tool def visualize_distributions(data: pd.DataFrame) -> str: """Create visualizations of numerical column distributions.""" # Access dataset from agent if no data provided if data is None: data = tool.agent.dataset numeric_cols = data.select_dtypes(include=[np.number]).columns if len(numeric_cols) == 0: return "No numerical columns found in the dataset." # Create HTML content with visualizations html_content = "
" # Create a grid of histograms using plotly fig = make_subplots(rows=len(numeric_cols), cols=1, subplot_titles=numeric_cols, vertical_spacing=0.05) for i, col in enumerate(numeric_cols): fig.add_trace( go.Histogram( x=data[col].dropna(), name=col, marker_color='#1a73e8', opacity=0.7 ), row=i+1, col=1 ) fig.update_layout( height=300 * len(numeric_cols), width=800, title_text="Distribution of Numerical Features", showlegend=False, font=dict(family="Inter, sans-serif"), margin=dict(l=40, r=40, t=40, b=20), ) html_content += fig.to_html(full_html=False, include_plotlyjs='cdn') html_content += "
" return html_content def generate_deepmind_logo(): """Generate a placeholder logo similar to DeepMind's style.""" fig = go.Figure() # Create simple geometric shapes for logo fig.add_shape( type="circle", x0=0.3, y0=0.3, x1=0.7, y1=0.7, line=dict(color="#1a73e8", width=3), fillcolor="rgba(26, 115, 232, 0.2)", ) fig.add_shape( type="circle", x0=0.4, y0=0.4, x1=0.6, y1=0.6, line=dict(color="#1a73e8", width=2), fillcolor="rgba(26, 115, 232, 0.4)", ) fig.update_layout( width=180, height=60, paper_bgcolor='rgba(0,0,0,0)', plot_bgcolor='rgba(0,0,0,0)', margin=dict(l=0, r=0, t=0, b=0), showlegend=False, xaxis=dict(showgrid=False, zeroline=False, visible=False), yaxis=dict(showgrid=False, zeroline=False, visible=False), ) return fig.to_html(full_html=False, include_plotlyjs='cdn') def main(): # Logo and header st.markdown("""

Data Analysis Assistant

Upload your dataset and get intelligent insights with AI-powered analysis

""", unsafe_allow_html=True) # Initialize session state if 'data' not in st.session_state: st.session_state['data'] = None if 'agent' not in st.session_state: st.session_state['agent'] = None if 'analysis_results' not in st.session_state: st.session_state['analysis_results'] = None # Create a two-column layout col1, col2 = st.columns([1, 3]) with col1: st.markdown('
', unsafe_allow_html=True) st.markdown('
Upload Dataset
', unsafe_allow_html=True) # File uploader with custom styling uploaded_file = st.file_uploader("", type="csv") if uploaded_file is not None: try: with st.spinner('Processing dataset...'): # Load the dataset data = pd.read_csv(uploaded_file) st.session_state['data'] = data # Initialize the agent with the dataset st.session_state['agent'] = DataAnalysisAgent( dataset=data, tools=[analyze_basic_stats, generate_correlation_matrix, analyze_categorical_columns, suggest_features, visualize_distributions], model=GroqLLM(), additional_authorized_imports=["pandas", "numpy", "matplotlib", "seaborn", "plotly"] ) # Display dataset statistics st.markdown("""
✓ Dataset loaded successfully
""", unsafe_allow_html=True) col1, col2 = st.columns(2) with col1: st.markdown(f"""
{data.shape[0]:,}
Rows
""", unsafe_allow_html=True) with col2: st.markdown(f"""
{data.shape[1]}
Columns
""", unsafe_allow_html=True) except Exception as e: st.error(f"Error: {str(e)}") # Analysis type selection if st.session_state['data'] is not None: st.markdown('
Analysis Tools
', unsafe_allow_html=True) analysis_type = st.selectbox( "Select analysis type", ["Data Overview", "Basic Statistics", "Feature Correlations", "Categorical Analysis", "Feature Engineering", "Data Distributions", "Ask Your Own Question"] ) st.markdown('
', unsafe_allow_html=True) # Main content area with col2: if st.session_state['data'] is not None: # Data preview tab st.markdown('
', unsafe_allow_html=True) st.markdown('
Data Preview
', unsafe_allow_html=True) # Add tabs for different data views data_tabs = st.tabs(["Data Sample", "Column Info", "Missing Values"]) with data_tabs[0]: st.markdown('
', unsafe_allow_html=True) st.dataframe(st.session_state['data'].head(10), use_container_width=True) st.markdown('
', unsafe_allow_html=True) with data_tabs[1]: col1, col2, col3 = st.columns(3) with col1: st.markdown("**Column Names**") st.write(st.session_state['data'].columns.tolist()) with col2: st.markdown("**Data Types**") for col, dtype in st.session_state['data'].dtypes.items(): st.write(f"{col}: {dtype}") with col3: st.markdown("**Non-Null Count**") for col, count in st.session_state['data'].count().items(): st.write(f"{col}: {count}/{len(st.session_state['data'])}") with data_tabs[2]: missing_data = st.session_state['data'].isnull().sum() if missing_data.sum() > 0: missing_df = pd.DataFrame({ 'Column': missing_data.index, 'Missing Values': missing_data.values, 'Percentage': round(missing_data.values / len(st.session_state['data']) * 100, 2) }) missing_df = missing_df[missing_df['Missing Values'] > 0].sort_values('Missing Values', ascending=False) st.dataframe(missing_df, use_container_width=True) # Add a visualization of missing values fig = px.bar( missing_df, x='Column', y='Percentage', color='Percentage', color_continuous_scale='Blues', title='Missing Values by Column (%)' ) fig.update_layout( xaxis_title='', yaxis_title='Missing Values (%)', height=400 ) st.plotly_chart(fig, use_container_width=True) else: st.success("No missing values in the dataset!") st.markdown('
', unsafe_allow_html=True) # Analysis results section if analysis_type: st.markdown('
', unsafe_allow_html=True) st.markdown(f'
{analysis_type} Results
', unsafe_allow_html=True) if analysis_type == "Data Overview": col1, col2 = st.columns(2) with col1: st.markdown("### Dataset Summary") st.dataframe(st.session_state['data'].describe(), use_container_width=True) with col2: st.markdown("### Data Profile") numeric_count = len(st.session_state['data'].select_dtypes(include=[np.number]).columns) categorical_count = len(st.session_state['data'].select_dtypes(include=['object', 'category']).columns) # Create a pie chart for data types fig = px.pie( values=[numeric_count, categorical_count], names=['Numeric', 'Categorical'], color_discrete_sequence=['#1a73e8', '#34a853'], hole=0.4 ) fig.update_layout( title='Column Types', font=dict(family="Inter, sans-serif"), legend=dict(orientation="h", yanchor="bottom", y=-0.2, xanchor="center", x=0.5) ) st.plotly_chart(fig, use_container_width=True) elif analysis_type == "Basic Statistics": with st.spinner('Analyzing basic statistics...'): result = st.session_state['agent'].run( "Use the analyze_basic_stats tool to analyze this dataset and " "provide insights about the numerical distributions." ) # Parse the string representation of the dictionary try: # Remove the literal 'str' prefix if present if result.startswith("str("): result = result[4:-1] # Convert string to dict import ast stats_dict = ast.literal_eval(result) # Display results in a more visual format for col, stats in stats_dict.items(): st.markdown(f"### {col}") # Create metrics in columns col1, col2, col3, col4 = st.columns(4) with col1: st.metric("Mean", f"{stats['mean']:.2f}") with col2: st.metric("Median", f"{stats['median']:.2f}") with col3: st.metric("Std Dev", f"{stats['std']:.2f}") with col4: st.metric("Skewness", f"{stats['skew']:.2f}") # Create a boxplot for this column fig = px.box( st.session_state['data'], y=col, points="all", color_discrete_sequence=['#1a73e8'], title=f"Distribution of {col}" ) fig.update_layout( height=300, margin=dict(t=40, b=20, l=40, r=20), font=dict(family="Inter, sans-serif") ) st.plotly_chart(fig, use_container_width=True) st.markdown("---") except Exception as e: st.write(result) elif analysis_type == "Feature Correlations": with st.spinner('Analyzing feature correlations...'): result = st.session_state['agent'].run( "Use the generate_correlation_matrix tool to analyze correlations " "and explain any strong relationships found." ) # If the result is HTML, display it directly if isinstance(result, str) and ("', unsafe_allow_html=True) else: # Display welcome message for users who haven't uploaded data yet st.markdown("""

Welcome to Data Analysis Assistant

Upload a CSV file to get started with instant insights and intelligent analysis. Our AI-powered assistant will help you understand your data like never before.

📊

Automatic Visualizations

Get instant charts and plots revealing insights in your data

🧠

AI-Powered Analysis

Advanced algorithms find patterns and correlations automatically

💡

Smart Recommendations

Get suggestions for feature engineering and data preparation

""", unsafe_allow_html=True) # Import for subplot creation from plotly.subplots import make_subplots if __name__ == "__main__": # Check if Groq API key is available if not os.environ.get("GROQ_API_KEY"): st.error(""" GROQ API key not found! Please set your GROQ_API_KEY environment variable. You can get an API key from https://console.groq.com/ """) else: main()