File size: 22,265 Bytes
baba48f f7c0656 baba48f efdf7d0 f7c0656 baba48f f7c0656 32d19ef d7aadc9 f7c0656 32d19ef baba48f 32d19ef f7c0656 baba48f f7c0656 baba48f f7c0656 32d19ef baba48f 32d19ef baba48f 32d19ef baba48f 32d19ef baba48f 35bedd7 32d19ef 35bedd7 baba48f 32d19ef baba48f 32d19ef baba48f 32d19ef baba48f 32d19ef baba48f 32d19ef baba48f 32d19ef baba48f 32d19ef baba48f 32d19ef baba48f 32d19ef baba48f 32d19ef baba48f 32d19ef baba48f a5405ac 32d19ef a5405ac 32d19ef a5405ac 32d19ef a5405ac 32d19ef a5405ac 32d19ef a5405ac 32d19ef a5405ac 32d19ef a5405ac 32d19ef a5405ac 32d19ef a5405ac 32d19ef a5405ac 32d19ef a5405ac 32d19ef a5405ac 32d19ef a5405ac 32d19ef a5405ac 32d19ef a5405ac 32d19ef a5405ac 32d19ef a5405ac 32d19ef a5405ac 32d19ef a5405ac 32d19ef a5405ac 32d19ef a5405ac 32d19ef a5405ac 32d19ef a5405ac 32d19ef a5405ac 32d19ef a5405ac 32d19ef a5405ac 32d19ef a5405ac dbc2611 a5405ac 32d19ef a5405ac 32d19ef baba48f 32d19ef a5405ac 32d19ef a5405ac 32d19ef baba48f 32d19ef a5405ac 32d19ef baba48f 32d19ef baba48f 32d19ef baba48f f7c0656 32d19ef baba48f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 |
import asyncio
import base64
import json
import os
from threading import Event
from datetime import datetime
import gradio as gr
import numpy as np
import websockets.sync.client
from dotenv import load_dotenv
from gradio_webrtc import StreamHandler, WebRTC
load_dotenv()
# Predefined API key
GEMINI_API_KEY = "AIzaSyBem8AlttTGdGxGH3bZEs0xcnw5RIF5BsY"
class MedicalGeminiConfig:
def __init__(self, api_key):
self.api_key = api_key
self.host = "generativelanguage.googleapis.com"
self.model = "models/gemini-2.0-flash-exp"
self.ws_url = f"wss://{self.host}/ws/google.ai.generativelanguage.v1alpha.GenerativeService.BidiGenerateContent?key={self.api_key}"
def get_medical_system_prompt(self):
return """You are SocioCare AI, a compassionate and knowledgeable medical preconsultation assistant. You are engaging in a real-time voice conversation with a patient for their preliminary health assessment.
IMPORTANT GUIDELINES:
- Speak naturally and conversationally, as if you're a caring healthcare professional
- Be empathetic, warm, and reassuring while maintaining professionalism
- Ask relevant follow-up questions to understand symptoms and concerns better
- Provide general health guidance and preliminary assessments
- ALWAYS emphasize that this is a preconsultation and not a substitute for professional medical care
- If symptoms seem serious or urgent, encourage immediate medical attention
- Maintain patient confidentiality and professionalism
- Use simple, clear language that patients can understand
- Be patient and allow time for the patient to explain their concerns thoroughly
PRECONSULTATION FLOW:
1. Greet the patient warmly and introduce yourself as SocioCare AI
2. Ask about their main health concern or symptoms
3. Listen actively and ask clarifying questions about symptoms, duration, severity
4. Provide general health information and preliminary guidance
5. Recommend appropriate next steps (rest, hydration, seeing a doctor, specialist referral, etc.)
6. Offer to answer any additional questions about their health concerns
7. Provide a summary of key points discussed
Remember: You are providing preliminary health assessment and information only. For diagnosis, treatment, and comprehensive care, patients should consult with licensed healthcare professionals."""
class AudioProcessor:
@staticmethod
def encode_audio(data, sample_rate):
encoded = base64.b64encode(data.tobytes()).decode("UTF-8")
return {
"realtimeInput": {
"mediaChunks": [
{
"mimeType": f"audio/pcm;rate={sample_rate}",
"data": encoded,
}
],
},
}
@staticmethod
def process_audio_response(data):
audio_data = base64.b64decode(data)
return np.frombuffer(audio_data, dtype=np.int16)
class MedicalGeminiHandler(StreamHandler):
def __init__(
self, expected_layout="mono", output_sample_rate=24000, output_frame_size=480
) -> None:
super().__init__(
expected_layout,
output_sample_rate,
output_frame_size,
input_sample_rate=24000,
)
self.config = None
self.ws = None
self.all_output_data = None
self.audio_processor = AudioProcessor()
self.args_set = Event()
self.session_started = False
self.conversation_log = []
def copy(self):
return MedicalGeminiHandler(
expected_layout=self.expected_layout,
output_sample_rate=self.output_sample_rate,
output_frame_size=self.output_frame_size,
)
def _initialize_websocket(self):
assert self.config, "Config not set"
try:
self.ws = websockets.sync.client.connect(self.config.ws_url, timeout=30)
initial_request = {
"setup": {
"model": self.config.model,
"generationConfig": {
"responseModalities": ["AUDIO"],
"speechConfig": {
"voiceConfig": {
"prebuiltVoiceConfig": {
"voiceName": "Aoede" # Warm, professional voice
}
}
}
},
"systemInstruction": {
"parts": [
{
"text": self.config.get_medical_system_prompt()
}
]
}
}
}
self.ws.send(json.dumps(initial_request))
setup_response = json.loads(self.ws.recv())
print(f"SocioCare AI preconsultation setup: {setup_response}")
# Send initial greeting
if not self.session_started:
self._send_initial_greeting()
self.session_started = True
except websockets.exceptions.WebSocketException as e:
print(f"WebSocket connection failed: {str(e)}")
self.ws = None
except Exception as e:
print(f"Setup failed: {str(e)}")
self.ws = None
def _send_initial_greeting(self):
"""Send initial greeting to start the medical preconsultation"""
try:
greeting_message = {
"clientContent": {
"turns": [
{
"role": "user",
"parts": [
{
"text": "Please start the preconsultation by greeting me as a patient and introducing yourself as SocioCare AI."
}
]
}
],
"turnComplete": True
}
}
self.ws.send(json.dumps(greeting_message))
except Exception as e:
print(f"Error sending initial greeting: {str(e)}")
async def fetch_args(self):
if self.channel:
self.channel.send("tick")
def set_args(self, args):
super().set_args(args)
self.args_set.set()
def receive(self, frame: tuple[int, np.ndarray]) -> None:
if not self.channel:
return
if not self.config:
# Use predefined API key instead of fetching from args
self.config = MedicalGeminiConfig(GEMINI_API_KEY)
try:
if not self.ws:
self._initialize_websocket()
_, array = frame
array = array.squeeze()
audio_message = self.audio_processor.encode_audio(
array, self.output_sample_rate
)
self.ws.send(json.dumps(audio_message))
except Exception as e:
print(f"Error in receive: {str(e)}")
if self.ws:
self.ws.close()
self.ws = None
def _process_server_content(self, content):
for part in content.get("parts", []):
data = part.get("inlineData", {}).get("data", "")
if data:
audio_array = self.audio_processor.process_audio_response(data)
if self.all_output_data is None:
self.all_output_data = audio_array
else:
self.all_output_data = np.concatenate(
(self.all_output_data, audio_array)
)
while self.all_output_data.shape[-1] >= self.output_frame_size:
yield (
self.output_sample_rate,
self.all_output_data[: self.output_frame_size].reshape(1, -1),
)
self.all_output_data = self.all_output_data[
self.output_frame_size :
]
def generator(self):
while True:
if not self.ws or not self.config:
print("WebSocket not connected")
yield None
continue
try:
message = self.ws.recv(timeout=5)
msg = json.loads(message)
if "serverContent" in msg:
content = msg["serverContent"].get("modelTurn", {})
yield from self._process_server_content(content)
except TimeoutError:
print("Timeout waiting for server response")
yield None
except Exception as e:
print(f"Error in generator: {str(e)}")
yield None
def emit(self) -> tuple[int, np.ndarray] | None:
if not self.ws:
return None
if not hasattr(self, "_generator"):
self._generator = self.generator()
try:
return next(self._generator)
except StopIteration:
self.reset()
return None
def reset(self) -> None:
if hasattr(self, "_generator"):
delattr(self, "_generator")
self.all_output_data = None
def shutdown(self) -> None:
if self.ws:
self.ws.close()
def check_connection(self):
try:
if not self.ws or self.ws.closed:
self._initialize_websocket()
return True
except Exception as e:
print(f"Connection check failed: {str(e)}")
return False
def get_rtc_configuration():
"""
Get RTC configuration using only public STUN servers
"""
return {
"iceServers": [
{"urls": "stun:stun.l.google.com:19302"},
{"urls": "stun:stun1.l.google.com:19302"},
{"urls": "stun:stun2.l.google.com:19302"},
{"urls": "stun:stun3.l.google.com:19302"},
{"urls": "stun:stun4.l.google.com:19302"},
]
}
class SocioCareAIPreconsultation:
def __init__(self):
self.demo = self._create_interface()
def _create_interface(self):
# Modern dark theme CSS matching the image
custom_css = """
<style>
/* Global dark theme */
.gradio-container {
background: linear-gradient(135deg, #0F0C29 0%, #24243e 50%, #302B63 100%) !important;
min-height: 100vh;
}
.dark {
background: linear-gradient(135deg, #0F0C29 0%, #24243e 50%, #302B63 100%) !important;
}
/* Main container */
.main-container {
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
min-height: 90vh;
padding: 2rem;
}
/* AI Icon and waves container */
.ai-icon-container {
position: relative;
margin-bottom: 3rem;
display: flex;
flex-direction: column;
align-items: center;
}
/* Audio waves */
.audio-waves {
display: flex;
align-items: center;
justify-content: center;
gap: 4px;
margin-bottom: 2rem;
height: 60px;
}
.wave-dot {
width: 6px;
height: 6px;
background: #667EEA;
border-radius: 50%;
animation: pulse 2s ease-in-out infinite;
opacity: 0.6;
}
.wave-bar {
width: 4px;
background: linear-gradient(to top, #667EEA, #764BA2);
border-radius: 2px;
animation: wave 1.5s ease-in-out infinite;
}
.wave-bar:nth-child(1) { height: 20px; animation-delay: 0s; }
.wave-bar:nth-child(2) { height: 35px; animation-delay: 0.1s; }
.wave-bar:nth-child(3) { height: 45px; animation-delay: 0.2s; }
.wave-bar:nth-child(4) { height: 60px; animation-delay: 0.3s; }
.wave-bar:nth-child(5) { height: 50px; animation-delay: 0.4s; }
.wave-bar:nth-child(6) { height: 40px; animation-delay: 0.5s; }
.wave-bar:nth-child(7) { height: 55px; animation-delay: 0.6s; }
.wave-bar:nth-child(8) { height: 35px; animation-delay: 0.7s; }
.wave-bar:nth-child(9) { height: 25px; animation-delay: 0.8s; }
.wave-bar:nth-child(10) { height: 40px; animation-delay: 0.9s; }
.wave-bar:nth-child(11) { height: 50px; animation-delay: 1s; }
.wave-bar:nth-child(12) { height: 30px; animation-delay: 1.1s; }
@keyframes wave {
0%, 100% { transform: scaleY(0.5); opacity: 0.7; }
50% { transform: scaleY(1); opacity: 1; }
}
@keyframes pulse {
0%, 100% { opacity: 0.4; transform: scale(1); }
50% { opacity: 1; transform: scale(1.2); }
}
/* AI Icon */
.ai-icon {
width: 120px;
height: 120px;
background: linear-gradient(135deg, #667EEA 0%, #764BA2 100%);
border-radius: 24px;
display: flex;
align-items: center;
justify-content: center;
font-size: 3rem;
color: white;
box-shadow: 0 20px 40px rgba(102, 126, 234, 0.3);
margin-bottom: 2rem;
position: relative;
overflow: hidden;
}
.ai-icon::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
background: linear-gradient(45deg, transparent 30%, rgba(255,255,255,0.1) 50%, transparent 70%);
animation: shimmer 3s ease-in-out infinite;
}
@keyframes shimmer {
0% { transform: translateX(-100%); }
100% { transform: translateX(100%); }
}
/* Title */
.ai-title {
font-size: 2.5rem;
font-weight: 700;
background: linear-gradient(135deg, #667EEA 0%, #764BA2 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
text-align: center;
margin-bottom: 0.5rem;
letter-spacing: -0.02em;
}
/* Subtitle */
.ai-subtitle {
color: #A0AEC0;
font-size: 1.1rem;
text-align: center;
margin-bottom: 3rem;
font-weight: 400;
}
/* WebRTC component styling */
.webrtc-container {
display: flex;
flex-direction: column;
align-items: center;
gap: 1rem;
}
/* Hide default gradio elements */
.gradio-container .wrap,
.gradio-container .container,
footer {
background: transparent !important;
border: none !important;
box-shadow: none !important;
}
/* Custom button styling for WebRTC */
button {
background: linear-gradient(135deg, #667EEA 0%, #764BA2 100%) !important;
border: none !important;
border-radius: 50px !important;
padding: 1rem 2rem !important;
color: white !important;
font-weight: 600 !important;
font-size: 1.1rem !important;
cursor: pointer !important;
transition: all 0.3s ease !important;
box-shadow: 0 10px 30px rgba(102, 126, 234, 0.3) !important;
}
button:hover {
transform: translateY(-2px) !important;
box-shadow: 0 15px 35px rgba(102, 126, 234, 0.4) !important;
}
/* Status indicators */
.status-dot {
width: 12px;
height: 12px;
border-radius: 50%;
background: #4ADE80;
box-shadow: 0 0 20px rgba(74, 222, 128, 0.5);
animation: pulse 2s ease-in-out infinite;
margin-right: 0.5rem;
}
.status-text {
color: #E2E8F0;
font-size: 0.9rem;
display: flex;
align-items: center;
justify-content: center;
margin-top: 1rem;
}
/* Hide default gradio styling */
.gradio-container .block {
background: transparent !important;
border: none !important;
box-shadow: none !important;
}
/* Responsive design */
@media (max-width: 768px) {
.ai-icon {
width: 100px;
height: 100px;
font-size: 2.5rem;
}
.ai-title {
font-size: 2rem;
}
.audio-waves {
height: 50px;
gap: 3px;
}
.wave-bar {
width: 3px;
}
}
</style>
"""
with gr.Blocks(theme=gr.themes.Glass(), css=custom_css) as demo:
with gr.Column(elem_classes=["main-container"]):
# Audio waves visualization
gr.HTML("""
<div class="audio-waves">
<div class="wave-dot"></div>
<div class="wave-dot"></div>
<div class="wave-dot"></div>
<div class="wave-bar"></div>
<div class="wave-bar"></div>
<div class="wave-bar"></div>
<div class="wave-bar"></div>
<div class="wave-bar"></div>
<div class="wave-bar"></div>
<div class="wave-bar"></div>
<div class="wave-bar"></div>
<div class="wave-bar"></div>
<div class="wave-bar"></div>
<div class="wave-bar"></div>
<div class="wave-bar"></div>
<div class="wave-dot"></div>
<div class="wave-dot"></div>
<div class="wave-dot"></div>
</div>
""")
# AI Icon
gr.HTML("""
<div class="ai-icon-container">
<div class="ai-icon">
AI✨
</div>
</div>
""")
# Title and Subtitle
gr.HTML("""
<h1 class="ai-title">AI Voice Agent</h1>
<p class="ai-subtitle">By SocioCare</p>
""")
# WebRTC Component
with gr.Column(elem_classes=["webrtc-container"]):
webrtc = WebRTC(
label="",
modality="audio",
mode="send-receive",
rtc_configuration=get_rtc_configuration(),
)
webrtc.stream(
MedicalGeminiHandler(),
inputs=[webrtc],
outputs=[webrtc],
time_limit=600, # 10 minutes consultation
concurrency_limit=3,
)
# Status indicator
gr.HTML("""
<div class="status-text">
<span class="status-dot"></span>
Ready to assist with your health consultation
</div>
""")
return demo
def launch(self):
# Try to find an available port starting from 7860
import socket
def find_free_port(start_port=7860):
"""Find a free port starting from the given port number"""
for port in range(start_port, start_port + 100):
try:
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.bind(('', port))
return port
except OSError:
continue
return None
# Get port from environment or find a free one
port = int(os.environ.get("PORT", 0)) if os.environ.get("PORT") else find_free_port()
if port is None:
print("Could not find an available port. Please set the PORT environment variable.")
return
print(f"Starting AI Voice Agent server on port {port}")
self.demo.launch(
server_name="0.0.0.0",
server_port=port,
ssl_verify=False,
ssl_keyfile=None,
ssl_certfile=None,
show_api=False,
quiet=False,
inbrowser=True # Automatically open in browser
)
if __name__ == "__main__":
app = SocioCareAIPreconsultation()
app.launch() |