Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
from scipy.ndimage import gaussian_filter
|
6 |
+
from transformers import pipeline
|
7 |
+
|
8 |
+
def preprocess_image(image):
|
9 |
+
"""Resize and convert image to PIL format if needed."""
|
10 |
+
if isinstance(image, np.ndarray):
|
11 |
+
image = Image.fromarray(image)
|
12 |
+
|
13 |
+
# Resize to 512x512 while maintaining aspect ratio
|
14 |
+
image = image.resize((512, 512))
|
15 |
+
return image
|
16 |
+
|
17 |
+
def segment_image(image, model_name="facebook/mask2former-swin-large-cityscapes-semantic"):
|
18 |
+
"""Perform semantic segmentation on the input image."""
|
19 |
+
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
|
20 |
+
|
21 |
+
# Load processor and model
|
22 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
23 |
+
model = Mask2FormerForUniversalSegmentation.from_pretrained(model_name)
|
24 |
+
|
25 |
+
# Prepare inputs
|
26 |
+
inputs = processor(images=image, return_tensors="pt")
|
27 |
+
|
28 |
+
# Run inference
|
29 |
+
with torch.no_grad():
|
30 |
+
outputs = model(**inputs)
|
31 |
+
|
32 |
+
# Post-process segmentation
|
33 |
+
semantic_map = processor.post_process_semantic_segmentation(
|
34 |
+
outputs,
|
35 |
+
target_sizes=[image.size[::-1]]
|
36 |
+
)[0]
|
37 |
+
|
38 |
+
# Convert to numpy and create binary mask
|
39 |
+
semantic_map = semantic_map.numpy()
|
40 |
+
return semantic_map
|
41 |
+
|
42 |
+
def apply_gaussian_blur(image, sigma=15):
|
43 |
+
"""Apply Gaussian blur to the background."""
|
44 |
+
# Convert image to numpy array
|
45 |
+
image_array = np.array(image)
|
46 |
+
|
47 |
+
# Create segmentation mask (assuming we want to keep the foreground)
|
48 |
+
segmentation_mask = segment_image(image)
|
49 |
+
|
50 |
+
# Choose a prominent object class (e.g., person with ID 24 in Cityscapes)
|
51 |
+
foreground_mask = (segmentation_mask == 24).astype(np.uint8)
|
52 |
+
|
53 |
+
# Prepare blurred version
|
54 |
+
blurred = np.zeros_like(image_array)
|
55 |
+
for channel in range(3):
|
56 |
+
blurred[:, :, channel] = gaussian_filter(image_array[:, :, channel], sigma=sigma)
|
57 |
+
|
58 |
+
# Combine original and blurred images based on mask
|
59 |
+
mask_3d = np.stack([foreground_mask] * 3, axis=2)
|
60 |
+
result = image_array * mask_3d + blurred * (1 - mask_3d)
|
61 |
+
|
62 |
+
return Image.fromarray(result.astype(np.uint8))
|
63 |
+
|
64 |
+
def estimate_depth(image, model_name="depth-anything/Depth-Anything-V2-Small-hf"):
|
65 |
+
"""Estimate depth of the image."""
|
66 |
+
depth_estimator = pipeline(
|
67 |
+
task="depth-estimation",
|
68 |
+
model=model_name,
|
69 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
70 |
+
)
|
71 |
+
|
72 |
+
depth_output = depth_estimator(image)
|
73 |
+
depth_map = np.array(depth_output["depth"])
|
74 |
+
|
75 |
+
# Normalize depth map
|
76 |
+
depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
|
77 |
+
|
78 |
+
return depth_map
|
79 |
+
|
80 |
+
def apply_depth_aware_blur(image, max_sigma=10, min_sigma=0):
|
81 |
+
"""Apply depth-aware blur to the image."""
|
82 |
+
# Estimate depth
|
83 |
+
depth_map = estimate_depth(image)
|
84 |
+
|
85 |
+
image_array = np.array(image)
|
86 |
+
blurred = np.zeros_like(image_array, dtype=np.float32)
|
87 |
+
|
88 |
+
# Interpolate sigmas based on depth
|
89 |
+
sigmas = np.interp(depth_map, [0, 1], [min_sigma, max_sigma])
|
90 |
+
|
91 |
+
# Precompute blurred layers
|
92 |
+
blur_stack = {}
|
93 |
+
for sigma in np.unique(sigmas):
|
94 |
+
if sigma > 0:
|
95 |
+
blurred_layer = np.zeros_like(image_array, dtype=np.float32)
|
96 |
+
for channel in range(3):
|
97 |
+
blurred_layer[:, :, channel] = gaussian_filter(
|
98 |
+
image_array[:, :, channel].astype(np.float32),
|
99 |
+
sigma=sigma
|
100 |
+
)
|
101 |
+
blur_stack[sigma] = blurred_layer
|
102 |
+
|
103 |
+
# Blend based on depth
|
104 |
+
for sigma in np.unique(sigmas):
|
105 |
+
if sigma > 0:
|
106 |
+
mask = (sigmas == sigma)
|
107 |
+
mask_3d = np.stack([mask] * 3, axis=2)
|
108 |
+
blurred += mask_3d * blur_stack[sigma]
|
109 |
+
else:
|
110 |
+
mask = (sigmas == 0)
|
111 |
+
mask_3d = np.stack([mask] * 3, axis=2)
|
112 |
+
blurred += mask_3d * image_array
|
113 |
+
|
114 |
+
return Image.fromarray(blurred.astype(np.uint8))
|
115 |
+
|
116 |
+
def process_image(image, blur_type, sigma=15):
|
117 |
+
"""Process image based on blur type."""
|
118 |
+
# Preprocess image
|
119 |
+
pil_image = preprocess_image(image)
|
120 |
+
|
121 |
+
# Apply appropriate blur
|
122 |
+
if blur_type == "Gaussian Background Blur":
|
123 |
+
result = apply_gaussian_blur(pil_image, sigma)
|
124 |
+
elif blur_type == "Depth-Aware Lens Blur":
|
125 |
+
result = apply_depth_aware_blur(pil_image, max_sigma=sigma)
|
126 |
+
else:
|
127 |
+
result = pil_image
|
128 |
+
|
129 |
+
return result
|
130 |
+
|
131 |
+
# Gradio Interface
|
132 |
+
def create_blur_app():
|
133 |
+
with gr.Blocks() as demo:
|
134 |
+
gr.Markdown("# Image Blur Effects")
|
135 |
+
|
136 |
+
with gr.Row():
|
137 |
+
input_image = gr.Image(label="Input Image", type="pil")
|
138 |
+
output_image = gr.Image(label="Processed Image")
|
139 |
+
|
140 |
+
with gr.Row():
|
141 |
+
blur_type = gr.Dropdown(
|
142 |
+
choices=[
|
143 |
+
"Gaussian Background Blur",
|
144 |
+
"Depth-Aware Lens Blur"
|
145 |
+
],
|
146 |
+
label="Blur Type"
|
147 |
+
)
|
148 |
+
sigma = gr.Slider(
|
149 |
+
minimum=0,
|
150 |
+
maximum=30,
|
151 |
+
value=15,
|
152 |
+
label="Blur Intensity"
|
153 |
+
)
|
154 |
+
|
155 |
+
process_btn = gr.Button("Apply Blur Effect")
|
156 |
+
|
157 |
+
process_btn.click(
|
158 |
+
fn=process_image,
|
159 |
+
inputs=[input_image, blur_type, sigma],
|
160 |
+
outputs=output_image
|
161 |
+
)
|
162 |
+
|
163 |
+
return demo
|
164 |
+
|
165 |
+
# Launch the app
|
166 |
+
if __name__ == "__main__":
|
167 |
+
demo = create_blur_app()
|
168 |
+
demo.launch()
|