Spaces:
Runtime error
Runtime error
skaliy
commited on
Commit
Β·
89fac49
1
Parent(s):
23eb6b2
update
Browse files
app.py
CHANGED
@@ -1,89 +1,82 @@
|
|
1 |
import gradio as gr
|
2 |
-
from fastMONAI.vision_all import *
|
3 |
-
from huggingface_hub import snapshot_download
|
4 |
-
from pathlib import Path
|
5 |
import torch
|
6 |
import cv2
|
|
|
|
|
7 |
|
8 |
def initialize_system():
|
9 |
"""Initial setup of model paths and other constants."""
|
10 |
-
models_path = Path(snapshot_download(repo_id="skaliy/endometrial_cancer_segmentation",
|
|
|
|
|
11 |
save_dir = Path.cwd() / 'ec_pred'
|
12 |
save_dir.mkdir(parents=True, exist_ok=True)
|
13 |
download_example_endometrial_cancer_data(path=save_dir, multi_channel=False)
|
14 |
|
15 |
return models_path, save_dir
|
16 |
|
17 |
-
def
|
18 |
-
"""
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
|
24 |
-
return learner, reorder, resample
|
25 |
-
|
26 |
-
def get_mid_slice(img, mask_data):
|
27 |
-
"""Extract the middle slice of the mask in a 3D array."""
|
28 |
-
|
29 |
-
sums = mask_data.sum(axis=(0,1))
|
30 |
-
mid_idx = np.argmax(sums)
|
31 |
-
img, mask_data = img[:, :, mid_idx], mask_data[:, :, mid_idx]
|
32 |
-
|
33 |
return np.fliplr(np.rot90(img, -1)), np.fliplr(np.rot90(mask_data, -1))
|
34 |
|
35 |
-
|
36 |
def get_fused_image(img, pred_mask, alpha=0.8):
|
37 |
-
"""
|
|
|
38 |
gray_img_colored = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
39 |
mask_color = np.array([0, 0, 255])
|
40 |
colored_mask = (pred_mask[..., None] * mask_color).astype(np.uint8)
|
41 |
-
|
42 |
return cv2.addWeighted(gray_img_colored, alpha, colored_mask, 1 - alpha, 0)
|
43 |
|
44 |
-
def compute_tumor_volume(mask_data):
|
45 |
-
"""Compute the volume of the tumor in milliliters (ml)."""
|
46 |
-
|
47 |
-
dx, dy, dz = mask_data.spacing
|
48 |
-
voxel_volume_ml = dx * dy * dz / 1000
|
49 |
-
return np.sum(mask_data) * voxel_volume_ml
|
50 |
|
51 |
-
def
|
52 |
"""Predict function using the learner and other resources."""
|
53 |
img_path = Path(fileobj.name)
|
54 |
|
55 |
save_fn = 'pred_' + img_path.stem
|
56 |
save_path = save_dir / save_fn
|
57 |
-
org_img, input_img, org_size = med_img_reader(img_path,
|
|
|
|
|
|
|
58 |
|
59 |
-
mask_data = inference(
|
|
|
|
|
60 |
|
61 |
if "".join(org_img.orientation) == "LSA":
|
62 |
mask_data = mask_data.permute(0,1,3,2)
|
63 |
mask_data = torch.flip(mask_data[0], dims=[1])
|
64 |
mask_data = torch.Tensor(mask_data)[None]
|
65 |
|
66 |
-
img = org_img.data
|
67 |
-
|
68 |
org_img.set_data(mask_data)
|
69 |
org_img.save(save_path)
|
70 |
|
71 |
-
img, pred_mask =
|
72 |
img = ((img - img.min()) / (img.max() - img.min()) * 255).astype(np.uint8) #normalize
|
73 |
-
|
|
|
74 |
|
75 |
return get_fused_image(img, pred_mask), round(volume, 2)
|
76 |
|
77 |
|
78 |
models_path, save_dir = initialize_system()
|
79 |
-
|
|
|
|
|
80 |
output_text = gr.Textbox(label="Volume of the predicted tumor:")
|
81 |
|
82 |
demo = gr.Interface(
|
83 |
-
fn=lambda fileobj:
|
84 |
inputs=["file"],
|
85 |
outputs=["image", output_text],
|
86 |
-
examples=[[save_dir/"vibe.nii.gz"]]
|
87 |
-
)
|
88 |
|
89 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
import torch
|
3 |
import cv2
|
4 |
+
from huggingface_hub import snapshot_download
|
5 |
+
from fastMONAI.vision_all import *
|
6 |
|
7 |
def initialize_system():
|
8 |
"""Initial setup of model paths and other constants."""
|
9 |
+
models_path = Path(snapshot_download(repo_id="skaliy/endometrial_cancer_segmentation",
|
10 |
+
cache_dir='models',
|
11 |
+
revision='main'))
|
12 |
save_dir = Path.cwd() / 'ec_pred'
|
13 |
save_dir.mkdir(parents=True, exist_ok=True)
|
14 |
download_example_endometrial_cancer_data(path=save_dir, multi_channel=False)
|
15 |
|
16 |
return models_path, save_dir
|
17 |
|
18 |
+
def extract_slice_from_mask(img, mask_data):
|
19 |
+
"""Extract a slice from the 3D [W, H, D] image and mask data based on mask data."""
|
20 |
|
21 |
+
sums = mask_data.sum(axis=(0, 1))
|
22 |
+
idx = np.argmax(sums)
|
23 |
+
img, mask_data = img[:, :, idx], mask_data[:, :, idx]
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
return np.fliplr(np.rot90(img, -1)), np.fliplr(np.rot90(mask_data, -1))
|
26 |
|
27 |
+
#| export
|
28 |
def get_fused_image(img, pred_mask, alpha=0.8):
|
29 |
+
"""Fuse a grayscale image with a mask overlay."""
|
30 |
+
|
31 |
gray_img_colored = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
32 |
mask_color = np.array([0, 0, 255])
|
33 |
colored_mask = (pred_mask[..., None] * mask_color).astype(np.uint8)
|
34 |
+
|
35 |
return cv2.addWeighted(gray_img_colored, alpha, colored_mask, 1 - alpha, 0)
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
def gradio_image_segmentation(fileobj, learn, reorder, resample, save_dir):
|
39 |
"""Predict function using the learner and other resources."""
|
40 |
img_path = Path(fileobj.name)
|
41 |
|
42 |
save_fn = 'pred_' + img_path.stem
|
43 |
save_path = save_dir / save_fn
|
44 |
+
org_img, input_img, org_size = med_img_reader(img_path,
|
45 |
+
reorder=reorder,
|
46 |
+
resample=resample,
|
47 |
+
only_tensor=False)
|
48 |
|
49 |
+
mask_data = inference(learn, reorder=reorder, resample=resample,
|
50 |
+
org_img=org_img, input_img=input_img,
|
51 |
+
org_size=org_size).data
|
52 |
|
53 |
if "".join(org_img.orientation) == "LSA":
|
54 |
mask_data = mask_data.permute(0,1,3,2)
|
55 |
mask_data = torch.flip(mask_data[0], dims=[1])
|
56 |
mask_data = torch.Tensor(mask_data)[None]
|
57 |
|
58 |
+
img = org_img.data
|
|
|
59 |
org_img.set_data(mask_data)
|
60 |
org_img.save(save_path)
|
61 |
|
62 |
+
img, pred_mask = extract_slice_from_mask(img[0], mask_data[0])
|
63 |
img = ((img - img.min()) / (img.max() - img.min()) * 255).astype(np.uint8) #normalize
|
64 |
+
|
65 |
+
volume = compute_binary_tumor_volume(org_img)
|
66 |
|
67 |
return get_fused_image(img, pred_mask), round(volume, 2)
|
68 |
|
69 |
|
70 |
models_path, save_dir = initialize_system()
|
71 |
+
learn, reorder, resample = load_system_resources(models_path=models_path,
|
72 |
+
learner_fn='vibe-learner.pkl',
|
73 |
+
variables_fn='vars.pkl')
|
74 |
output_text = gr.Textbox(label="Volume of the predicted tumor:")
|
75 |
|
76 |
demo = gr.Interface(
|
77 |
+
fn=lambda fileobj: gradio_image_segmentation(fileobj, learn, reorder, resample, save_dir),
|
78 |
inputs=["file"],
|
79 |
outputs=["image", output_text],
|
80 |
+
examples=[[save_dir/"vibe.nii.gz"]])
|
|
|
81 |
|
82 |
demo.launch()
|