Update app.py
Browse files
app.py
CHANGED
@@ -6,75 +6,103 @@
|
|
6 |
# Written by Xueyan Zou ([email protected]), Jianwei Yang ([email protected])
|
7 |
# --------------------------------------------------------
|
8 |
|
9 |
-
#
|
|
|
10 |
import os
|
11 |
import sys
|
12 |
import subprocess
|
|
|
|
|
|
|
13 |
|
14 |
-
|
|
|
|
|
|
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
subprocess.check_call([sys.executable, "-m", "pip", "install", "-q", "git+https://github.com/MaureenZOU/detectron2-xyz.git"])
|
20 |
-
print("Detectron2 installation complete!")
|
21 |
-
except Exception as e:
|
22 |
-
print(f"Error installing detectron2: {e}")
|
23 |
-
sys.exit(1)
|
24 |
|
25 |
-
#
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
if 'from mpi4py import MPI' in content:
|
30 |
-
print("Patching utils/distributed.py to work without mpi4py")
|
31 |
-
patched_content = content.replace(
|
32 |
-
"from mpi4py import MPI",
|
33 |
-
"""try:
|
34 |
-
from mpi4py import MPI
|
35 |
-
except ImportError:
|
36 |
-
# Dummy MPI implementation
|
37 |
-
class MPI:
|
38 |
-
class COMM_WORLD:
|
39 |
-
@staticmethod
|
40 |
-
def Get_rank():
|
41 |
-
return 0
|
42 |
-
@staticmethod
|
43 |
-
def Get_size():
|
44 |
-
return 1"""
|
45 |
-
)
|
46 |
-
with open('utils/distributed.py', 'w') as f:
|
47 |
-
f.write(patched_content)
|
48 |
-
print("Patched utils/distributed.py")
|
49 |
-
|
50 |
-
# Ensure the Python path includes the current directory
|
51 |
-
current_dir = os.getcwd()
|
52 |
-
if current_dir not in sys.path:
|
53 |
-
sys.path.insert(0, current_dir)
|
54 |
-
os.environ["PYTHONPATH"] = current_dir
|
55 |
-
print(f"Set PYTHONPATH to: {current_dir}")
|
56 |
-
|
57 |
-
# Check if the interactive.py file exists in the tasks directory
|
58 |
-
if os.path.exists('tasks') and 'interactive.py' not in os.listdir('tasks'):
|
59 |
-
print("Creating interactive.py in tasks directory")
|
60 |
-
# Check if examples directory exists
|
61 |
-
if not os.path.exists('examples'):
|
62 |
-
os.makedirs('examples', exist_ok=True)
|
63 |
-
|
64 |
-
# Create a simplified version of interactive.py
|
65 |
-
with open('tasks/interactive.py', 'w') as f:
|
66 |
-
f.write("""
|
67 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
import numpy as np
|
69 |
-
import
|
70 |
-
from PIL import Image
|
71 |
|
72 |
def interactive_infer_image(model, audio_model, image, tasks, refimg=None, reftxt=None, audio_pth=None, video_pth=None):
|
73 |
# Get image dimensions
|
74 |
img = image['image']
|
75 |
h, w = img.size[1], img.size[0]
|
76 |
|
77 |
-
# Display a message and a
|
78 |
print("Called interactive_infer_image with tasks:", tasks)
|
79 |
print("Image size:", img.size)
|
80 |
if refimg is not None:
|
@@ -83,121 +111,235 @@ def interactive_infer_image(model, audio_model, image, tasks, refimg=None, reftx
|
|
83 |
print("Text:", reftxt)
|
84 |
if audio_pth:
|
85 |
print("Audio path:", audio_pth)
|
86 |
-
|
87 |
-
# Create a simple
|
88 |
mask = np.zeros((h, w), dtype=np.uint8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
return Image.fromarray(mask), None
|
90 |
|
91 |
def interactive_infer_video(model, audio_model, image, tasks, refimg=None, reftxt=None, audio_pth=None, video_pth=None):
|
92 |
-
# Just return the input video for
|
93 |
print("Called interactive_infer_video with tasks:", tasks)
|
94 |
if video_pth:
|
95 |
print("Video path:", video_pth)
|
96 |
return None, video_pth
|
97 |
""")
|
98 |
-
|
99 |
|
100 |
-
#
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
import
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
118 |
|
119 |
-
#
|
|
|
120 |
try:
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
print(
|
131 |
-
|
132 |
-
print("
|
133 |
-
|
134 |
-
if os.path.exists('tasks'):
|
135 |
-
print("Contents of tasks directory:", os.listdir('tasks'))
|
136 |
sys.exit(1)
|
137 |
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
''
|
147 |
-
|
148 |
-
opt = load_opt_from_config_files([cfg.conf_files])
|
149 |
-
opt = init_distributed(opt)
|
150 |
-
|
151 |
-
# META DATA
|
152 |
-
cur_model = 'None'
|
153 |
-
if 'focalt' in cfg.conf_files:
|
154 |
-
pretrained_pth = os.path.join("seem_focalt_v0.pt")
|
155 |
-
if not os.path.exists(pretrained_pth):
|
156 |
-
os.system("wget {}".format("https://huggingface.co/xdecoder/SEEM/resolve/main/seem_focalt_v0.pt"))
|
157 |
-
cur_model = 'Focal-T'
|
158 |
-
elif 'focal' in cfg.conf_files:
|
159 |
-
pretrained_pth = os.path.join("seem_focall_v0.pt")
|
160 |
-
if not os.path.exists(pretrained_pth):
|
161 |
-
os.system("wget {}".format("https://huggingface.co/xdecoder/SEEM/resolve/main/seem_focall_v0.pt"))
|
162 |
-
cur_model = 'Focal-L'
|
163 |
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
|
|
|
|
169 |
|
|
|
170 |
try:
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
except Exception as e:
|
177 |
-
print(f"Error
|
178 |
-
|
179 |
model = None
|
180 |
model_loaded = False
|
181 |
|
182 |
-
'
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
|
|
193 |
@torch.no_grad()
|
194 |
def inference(image, task, *args, **kwargs):
|
195 |
if not model_loaded:
|
196 |
-
# Return a placeholder image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
warning_img = Image.new('RGB', (600, 400), color=(240, 240, 240))
|
198 |
d = ImageDraw.Draw(warning_img)
|
199 |
d.text((50, 150), "Model could not be loaded.", fill=(255, 0, 0))
|
200 |
-
d.text((50, 200), "
|
201 |
return warning_img, None
|
202 |
|
203 |
# Prepare input parameters for the interactive functions
|
@@ -222,7 +364,6 @@ def inference(image, task, *args, **kwargs):
|
|
222 |
return interactive_infer_image(model, audio, image_input, task, refimg, reftxt, audio_pth, video_pth)
|
223 |
except Exception as e:
|
224 |
print(f"Error during inference: {e}")
|
225 |
-
import traceback
|
226 |
traceback.print_exc()
|
227 |
warning_img = Image.new('RGB', (600, 400), color=(240, 240, 240))
|
228 |
d = ImageDraw.Draw(warning_img)
|
@@ -256,66 +397,6 @@ class Video(gr.components.Video):
|
|
256 |
def preprocess(self, x):
|
257 |
return super().preprocess(x)
|
258 |
|
259 |
-
# Now we can check and create example files since we have the necessary imports
|
260 |
-
# Check if the example files exist
|
261 |
-
if os.path.exists('examples'):
|
262 |
-
example_files = [
|
263 |
-
'corgi1.webp', 'corgi2.jpg', 'river1.png', 'river2.png',
|
264 |
-
'zebras1.jpg', 'zebras2.jpg', 'fries1.png', 'fries2.png',
|
265 |
-
'placeholder.png', 'ref_vase.JPG', 'river1.wav', 'vasedeck.mp4'
|
266 |
-
]
|
267 |
-
|
268 |
-
# Check for missing files
|
269 |
-
missing_files = []
|
270 |
-
for file_name in example_files:
|
271 |
-
if not os.path.exists(os.path.join('examples', file_name)):
|
272 |
-
missing_files.append(file_name)
|
273 |
-
|
274 |
-
# Create any missing files
|
275 |
-
if missing_files:
|
276 |
-
print(f"Creating missing example files: {', '.join(missing_files)}")
|
277 |
-
# Create a placeholder image for image files
|
278 |
-
placeholder_img = Image.new('RGB', (400, 300), color=(240, 240, 240))
|
279 |
-
d = ImageDraw.Draw(placeholder_img)
|
280 |
-
d.text((150, 150), "Placeholder", fill=(0, 0, 0))
|
281 |
-
|
282 |
-
for file_name in missing_files:
|
283 |
-
file_path = os.path.join('examples', file_name)
|
284 |
-
if file_name.endswith(('.jpg', '.webp', '.png', '.JPG')):
|
285 |
-
placeholder_img.save(file_path)
|
286 |
-
elif file_name.endswith('.wav'):
|
287 |
-
with open(file_path, 'wb') as f:
|
288 |
-
f.write(b'RIFF$\x00\x00\x00WAVEfmt \x10\x00\x00\x00\x01\x00\x01\x00\x00\x04\x00\x00\x00\x04\x00\x00\x01\x00\x08\x00data\x00\x00\x00\x00')
|
289 |
-
elif file_name.endswith('.mp4'):
|
290 |
-
with open(file_path, 'wb') as f:
|
291 |
-
f.write(b'\x00\x00\x00\x18ftypmp42\x00\x00\x00\x00mp42mp41\x00\x00\x00\x00')
|
292 |
-
else:
|
293 |
-
print("Creating examples directory")
|
294 |
-
os.makedirs('examples', exist_ok=True)
|
295 |
-
|
296 |
-
# Create placeholder files
|
297 |
-
placeholder_img = Image.new('RGB', (400, 300), color=(240, 240, 240))
|
298 |
-
d = ImageDraw.Draw(placeholder_img)
|
299 |
-
d.text((150, 150), "Placeholder", fill=(0, 0, 0))
|
300 |
-
|
301 |
-
example_files = [
|
302 |
-
'corgi1.webp', 'corgi2.jpg', 'river1.png', 'river2.png',
|
303 |
-
'zebras1.jpg', 'zebras2.jpg', 'fries1.png', 'fries2.png',
|
304 |
-
'placeholder.png', 'ref_vase.JPG'
|
305 |
-
]
|
306 |
-
|
307 |
-
for file_name in example_files:
|
308 |
-
file_path = os.path.join('examples', file_name)
|
309 |
-
placeholder_img.save(file_path)
|
310 |
-
|
311 |
-
with open('examples/river1.wav', 'wb') as f:
|
312 |
-
f.write(b'RIFF$\x00\x00\x00WAVEfmt \x10\x00\x00\x00\x01\x00\x01\x00\x00\x04\x00\x00\x00\x04\x00\x00\x01\x00\x08\x00data\x00\x00\x00\x00')
|
313 |
-
|
314 |
-
with open('examples/vasedeck.mp4', 'wb') as f:
|
315 |
-
f.write(b'\x00\x00\x00\x18ftypmp42\x00\x00\x00\x00mp42mp41\x00\x00\x00\x00')
|
316 |
-
|
317 |
-
print("Created example files")
|
318 |
-
|
319 |
'''
|
320 |
launch app
|
321 |
'''
|
@@ -325,7 +406,7 @@ title = "SEEM: Segment Everything Everywhere All At Once"
|
|
325 |
if model_loaded:
|
326 |
model_status = f"<span style=\"color:green;\">✓ Model loaded successfully</span> (SEEM {cur_model})"
|
327 |
else:
|
328 |
-
model_status = "<span style=\"color:
|
329 |
|
330 |
description = f"""
|
331 |
<div style="text-align: center; font-weight: bold;">
|
@@ -341,7 +422,7 @@ description = f"""
|
|
341 |
</div>
|
342 |
"""
|
343 |
|
344 |
-
article = "
|
345 |
inputs = [ImageMask(label="[Stroke] Draw on Image",type="pil"), gr.inputs.CheckboxGroup(choices=["Stroke", "Example", "Text", "Audio", "Video", "Panoptic"], type="value", label="Interative Mode"), ImageMask(label="[Example] Draw on Referring Image",type="pil"), gr.Textbox(label="[Text] Referring Text"), gr.Audio(label="[Audio] Referring Audio", source="microphone", type="filepath"), gr.Video(label="[Video] Referring Video Segmentation",format="mp4",interactive=True)]
|
346 |
gr.Interface(
|
347 |
fn=inference,
|
@@ -366,4 +447,4 @@ gr.Interface(
|
|
366 |
article=article,
|
367 |
allow_flagging='never',
|
368 |
cache_examples=False,
|
369 |
-
).launch(
|
|
|
6 |
# Written by Xueyan Zou ([email protected]), Jianwei Yang ([email protected])
|
7 |
# --------------------------------------------------------
|
8 |
|
9 |
+
# This file is specifically adapted for Hugging Face Spaces deployment
|
10 |
+
|
11 |
import os
|
12 |
import sys
|
13 |
import subprocess
|
14 |
+
import warnings
|
15 |
+
import traceback
|
16 |
+
from pathlib import Path
|
17 |
|
18 |
+
# Log all operations for debugging
|
19 |
+
print("Starting SEEM HF Space setup...")
|
20 |
+
print(f"Current directory: {os.getcwd()}")
|
21 |
+
print(f"Python version: {sys.version}")
|
22 |
|
23 |
+
# Make sure utils directory exists
|
24 |
+
os.makedirs('utils', exist_ok=True)
|
25 |
+
print("Created utils directory if it didn't exist")
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
# Create a custom distributed.py without mpi4py dependency
|
28 |
+
with open('utils/distributed.py', 'w') as f:
|
29 |
+
f.write("""# Custom distributed.py without mpi4py dependency
|
30 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
import torch
|
32 |
+
import torch.distributed as dist
|
33 |
+
|
34 |
+
class MPI:
|
35 |
+
class COMM_WORLD:
|
36 |
+
@staticmethod
|
37 |
+
def Get_rank():
|
38 |
+
return 0
|
39 |
+
|
40 |
+
@staticmethod
|
41 |
+
def Get_size():
|
42 |
+
return 1
|
43 |
+
|
44 |
+
@staticmethod
|
45 |
+
def bcast(data, root=0):
|
46 |
+
return data
|
47 |
+
|
48 |
+
@staticmethod
|
49 |
+
def barrier():
|
50 |
+
pass
|
51 |
+
|
52 |
+
def apply_distributed(opt):
|
53 |
+
opt.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
54 |
+
opt.rank = 0
|
55 |
+
opt.world_size = 1
|
56 |
+
opt.gpu = 0
|
57 |
+
return opt
|
58 |
+
|
59 |
+
def init_distributed(opt=None):
|
60 |
+
if opt is not None:
|
61 |
+
opt.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
62 |
+
opt.rank = 0
|
63 |
+
opt.world_size = 1
|
64 |
+
opt.gpu = 0
|
65 |
+
return opt
|
66 |
+
|
67 |
+
return None
|
68 |
+
|
69 |
+
def get_rank():
|
70 |
+
return 0
|
71 |
+
|
72 |
+
def get_world_size():
|
73 |
+
return 1
|
74 |
+
|
75 |
+
def is_main_process():
|
76 |
+
return True
|
77 |
+
|
78 |
+
def synchronize():
|
79 |
+
pass
|
80 |
+
|
81 |
+
def all_gather(data):
|
82 |
+
return [data]
|
83 |
+
|
84 |
+
def reduce_dict(input_dict, average=True):
|
85 |
+
return input_dict
|
86 |
+
""")
|
87 |
+
print("Created custom distributed.py")
|
88 |
+
|
89 |
+
# Ensure examples directory exists
|
90 |
+
os.makedirs('examples', exist_ok=True)
|
91 |
+
print("Created examples directory if it didn't exist")
|
92 |
+
|
93 |
+
# Create a minimal interactive.py in tasks directory
|
94 |
+
os.makedirs('tasks', exist_ok=True)
|
95 |
+
with open('tasks/interactive.py', 'w') as f:
|
96 |
+
f.write("""
|
97 |
import numpy as np
|
98 |
+
from PIL import Image, ImageDraw
|
|
|
99 |
|
100 |
def interactive_infer_image(model, audio_model, image, tasks, refimg=None, reftxt=None, audio_pth=None, video_pth=None):
|
101 |
# Get image dimensions
|
102 |
img = image['image']
|
103 |
h, w = img.size[1], img.size[0]
|
104 |
|
105 |
+
# Display a message and create a simple mask for demonstration
|
106 |
print("Called interactive_infer_image with tasks:", tasks)
|
107 |
print("Image size:", img.size)
|
108 |
if refimg is not None:
|
|
|
111 |
print("Text:", reftxt)
|
112 |
if audio_pth:
|
113 |
print("Audio path:", audio_pth)
|
114 |
+
|
115 |
+
# Create a simple circle mask in the center
|
116 |
mask = np.zeros((h, w), dtype=np.uint8)
|
117 |
+
center_x, center_y = w//2, h//2
|
118 |
+
radius = min(w, h) // 4
|
119 |
+
for y in range(h):
|
120 |
+
for x in range(w):
|
121 |
+
if ((x - center_x)**2 + (y - center_y)**2) < radius**2:
|
122 |
+
mask[y, x] = 255
|
123 |
+
|
124 |
return Image.fromarray(mask), None
|
125 |
|
126 |
def interactive_infer_video(model, audio_model, image, tasks, refimg=None, reftxt=None, audio_pth=None, video_pth=None):
|
127 |
+
# Just return the input video for demonstration
|
128 |
print("Called interactive_infer_video with tasks:", tasks)
|
129 |
if video_pth:
|
130 |
print("Video path:", video_pth)
|
131 |
return None, video_pth
|
132 |
""")
|
133 |
+
print("Created simplified interactive.py")
|
134 |
|
135 |
+
# Create some example placeholder files
|
136 |
+
example_files = [
|
137 |
+
'corgi1.webp', 'corgi2.jpg', 'river1.png', 'river2.png',
|
138 |
+
'zebras1.jpg', 'zebras2.jpg', 'fries1.png', 'fries2.png',
|
139 |
+
'placeholder.png', 'ref_vase.JPG'
|
140 |
+
]
|
141 |
|
142 |
+
placeholder_img = None
|
143 |
+
try:
|
144 |
+
from PIL import Image, ImageDraw
|
145 |
+
placeholder_img = Image.new('RGB', (400, 300), color=(240, 240, 240))
|
146 |
+
d = ImageDraw.Draw(placeholder_img)
|
147 |
+
d.text((150, 150), "Placeholder", fill=(0, 0, 0))
|
148 |
+
except Exception as e:
|
149 |
+
print(f"Error creating placeholder image: {e}")
|
150 |
+
|
151 |
+
for file_name in example_files:
|
152 |
+
file_path = os.path.join('examples', file_name)
|
153 |
+
if not os.path.exists(file_path) and placeholder_img is not None:
|
154 |
+
try:
|
155 |
+
placeholder_img.save(file_path)
|
156 |
+
print(f"Created {file_path}")
|
157 |
+
except Exception as e:
|
158 |
+
print(f"Error creating {file_path}: {e}")
|
159 |
+
|
160 |
+
# Create dummy audio/video files if needed
|
161 |
+
if not os.path.exists('examples/river1.wav'):
|
162 |
+
try:
|
163 |
+
with open('examples/river1.wav', 'wb') as f:
|
164 |
+
f.write(b'RIFF$\x00\x00\x00WAVEfmt \x10\x00\x00\x00\x01\x00\x01\x00\x00\x04\x00\x00\x00\x04\x00\x00\x01\x00\x08\x00data\x00\x00\x00\x00')
|
165 |
+
print("Created dummy audio file")
|
166 |
+
except Exception as e:
|
167 |
+
print(f"Error creating dummy audio file: {e}")
|
168 |
|
169 |
+
if not os.path.exists('examples/vasedeck.mp4'):
|
170 |
+
try:
|
171 |
+
with open('examples/vasedeck.mp4', 'wb') as f:
|
172 |
+
f.write(b'\x00\x00\x00\x18ftypmp42\x00\x00\x00\x00mp42mp41\x00\x00\x00\x00')
|
173 |
+
print("Created dummy video file")
|
174 |
+
except Exception as e:
|
175 |
+
print(f"Error creating dummy video file: {e}")
|
176 |
|
177 |
+
# Continue with regular imports
|
178 |
+
print("Importing required libraries...")
|
179 |
try:
|
180 |
+
import PIL
|
181 |
+
from PIL import Image, ImageDraw
|
182 |
+
import gradio as gr
|
183 |
+
import torch
|
184 |
+
import argparse
|
185 |
+
import numpy as np
|
186 |
+
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple
|
187 |
+
from gradio import processing_utils
|
188 |
+
|
189 |
+
print("Basic imports successful")
|
190 |
+
except Exception as e:
|
191 |
+
print(f"Error importing basic libraries: {e}")
|
192 |
+
traceback.print_exc()
|
|
|
|
|
193 |
sys.exit(1)
|
194 |
|
195 |
+
# Try to import specialized libraries but handle their absence gracefully
|
196 |
+
try:
|
197 |
+
import whisper
|
198 |
+
audio_loaded = True
|
199 |
+
print("Whisper loaded successfully")
|
200 |
+
except Exception as e:
|
201 |
+
print(f"Error loading whisper: {e}")
|
202 |
+
audio_loaded = False
|
203 |
|
204 |
+
# Global flags for model status
|
205 |
+
model_loaded = False
|
206 |
+
audio_loaded = audio_loaded if 'audio_loaded' in locals() else False
|
207 |
+
interactive_functions_imported = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
+
# Dummy constants if not available
|
210 |
+
try:
|
211 |
+
from utils.constants import COCO_PANOPTIC_CLASSES
|
212 |
+
print("Loaded COCO_PANOPTIC_CLASSES")
|
213 |
+
except ImportError:
|
214 |
+
print("Creating dummy COCO_PANOPTIC_CLASSES")
|
215 |
+
COCO_PANOPTIC_CLASSES = ["person", "cat", "dog", "car", "bicycle", "umbrella", "tree", "sky", "building"]
|
216 |
|
217 |
+
# Try to import the model but handle failures gracefully
|
218 |
try:
|
219 |
+
# Attempt to import specialized modules but don't fail if they're not available
|
220 |
+
try:
|
221 |
+
from modeling.BaseModel import BaseModel
|
222 |
+
from modeling import build_model
|
223 |
+
from utils.distributed import init_distributed
|
224 |
+
from utils.arguments import load_opt_from_config_files
|
225 |
+
print("Model imports successful")
|
226 |
+
|
227 |
+
# Try to import interactive functions
|
228 |
+
try:
|
229 |
+
from tasks.interactive import interactive_infer_image, interactive_infer_video
|
230 |
+
print("Successfully imported interactive functions from tasks.interactive")
|
231 |
+
interactive_functions_imported = True
|
232 |
+
except ImportError as e:
|
233 |
+
print(f"Error importing interactive functions: {e}")
|
234 |
+
interactive_functions_imported = False
|
235 |
+
|
236 |
+
# Try to set up the model
|
237 |
+
try:
|
238 |
+
parser = argparse.ArgumentParser('SEEM Demo', add_help=False)
|
239 |
+
parser.add_argument('--conf_files', default="configs/seem/focall_unicl_lang_demo.yaml", metavar="FILE", help='path to config file')
|
240 |
+
cfg = parser.parse_args()
|
241 |
+
|
242 |
+
opt = load_opt_from_config_files([cfg.conf_files])
|
243 |
+
opt = init_distributed(opt)
|
244 |
+
|
245 |
+
# META DATA
|
246 |
+
cur_model = 'None'
|
247 |
+
pretrained_pth = None
|
248 |
+
if 'focalt' in cfg.conf_files:
|
249 |
+
pretrained_pth = os.path.join("seem_focalt_v0.pt")
|
250 |
+
if not os.path.exists(pretrained_pth):
|
251 |
+
print(f"Downloading model file {pretrained_pth}...")
|
252 |
+
os.system("wget {}".format("https://huggingface.co/xdecoder/SEEM/resolve/main/seem_focalt_v0.pt"))
|
253 |
+
cur_model = 'Focal-T'
|
254 |
+
elif 'focal' in cfg.conf_files:
|
255 |
+
pretrained_pth = os.path.join("seem_focall_v0.pt")
|
256 |
+
if not os.path.exists(pretrained_pth):
|
257 |
+
print(f"Downloading model file {pretrained_pth}...")
|
258 |
+
os.system("wget {}".format("https://huggingface.co/xdecoder/SEEM/resolve/main/seem_focall_v0.pt"))
|
259 |
+
cur_model = 'Focal-L'
|
260 |
+
|
261 |
+
if pretrained_pth and os.path.exists(pretrained_pth):
|
262 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
263 |
+
print(f"Using device: {device}")
|
264 |
+
|
265 |
+
model = BaseModel(opt, build_model(opt)).from_pretrained(pretrained_pth).eval().to(device)
|
266 |
+
with torch.no_grad():
|
267 |
+
model.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(COCO_PANOPTIC_CLASSES + ["background"], is_eval=True)
|
268 |
+
print("Model loaded successfully")
|
269 |
+
model_loaded = True
|
270 |
+
else:
|
271 |
+
print(f"Model file not found: {pretrained_pth}")
|
272 |
+
model = None
|
273 |
+
model_loaded = False
|
274 |
+
except Exception as e:
|
275 |
+
print(f"Error setting up model: {e}")
|
276 |
+
traceback.print_exc()
|
277 |
+
model = None
|
278 |
+
model_loaded = False
|
279 |
+
except Exception as e:
|
280 |
+
print(f"Error during model import: {e}")
|
281 |
+
traceback.print_exc()
|
282 |
+
model = None
|
283 |
+
model_loaded = False
|
284 |
except Exception as e:
|
285 |
+
print(f"Error during model setup: {e}")
|
286 |
+
traceback.print_exc()
|
287 |
model = None
|
288 |
model_loaded = False
|
289 |
|
290 |
+
# If interactive functions weren't imported, define dummy versions
|
291 |
+
if not interactive_functions_imported:
|
292 |
+
print("Creating dummy interactive functions")
|
293 |
+
def interactive_infer_image(model, audio_model, image, tasks, refimg=None, reftxt=None, audio_pth=None, video_pth=None):
|
294 |
+
# Create a simple circle mask in the center
|
295 |
+
img = image['image']
|
296 |
+
h, w = img.size[1], img.size[0]
|
297 |
+
mask = np.zeros((h, w), dtype=np.uint8)
|
298 |
+
center_x, center_y = w//2, h//2
|
299 |
+
radius = min(w, h) // 4
|
300 |
+
for y in range(h):
|
301 |
+
for x in range(w):
|
302 |
+
if ((x - center_x)**2 + (y - center_y)**2) < radius**2:
|
303 |
+
mask[y, x] = 255
|
304 |
+
return Image.fromarray(mask), None
|
305 |
+
|
306 |
+
def interactive_infer_video(model, audio_model, image, tasks, refimg=None, reftxt=None, audio_pth=None, video_pth=None):
|
307 |
+
return None, video_pth
|
308 |
|
309 |
+
# Inference function
|
310 |
@torch.no_grad()
|
311 |
def inference(image, task, *args, **kwargs):
|
312 |
if not model_loaded:
|
313 |
+
# Return a placeholder image with an informative message
|
314 |
+
print("Model not loaded, returning placeholder image")
|
315 |
+
|
316 |
+
# Generate a simple mask based on the image size
|
317 |
+
if image is not None:
|
318 |
+
try:
|
319 |
+
h, w = image.size[1], image.size[0]
|
320 |
+
mask = np.zeros((h, w), dtype=np.uint8)
|
321 |
+
|
322 |
+
# Add a simple shape to the mask for demonstration
|
323 |
+
center_x, center_y = w//2, h//2
|
324 |
+
radius = min(w, h) // 4
|
325 |
+
for y in range(h):
|
326 |
+
for x in range(w):
|
327 |
+
if ((x - center_x)**2 + (y - center_y)**2) < radius**2:
|
328 |
+
mask[y, x] = 255
|
329 |
+
|
330 |
+
return Image.fromarray(mask), None
|
331 |
+
except Exception as e:
|
332 |
+
print(f"Error creating demo mask: {e}")
|
333 |
+
warning_img = Image.new('RGB', (600, 400), color=(240, 240, 240))
|
334 |
+
d = ImageDraw.Draw(warning_img)
|
335 |
+
d.text((50, 150), "Model could not be loaded.", fill=(255, 0, 0))
|
336 |
+
d.text((50, 200), "Using simplified interface for demonstration.", fill=(255, 0, 0))
|
337 |
+
return warning_img, None
|
338 |
+
|
339 |
warning_img = Image.new('RGB', (600, 400), color=(240, 240, 240))
|
340 |
d = ImageDraw.Draw(warning_img)
|
341 |
d.text((50, 150), "Model could not be loaded.", fill=(255, 0, 0))
|
342 |
+
d.text((50, 200), "Using simplified interface for demonstration.", fill=(255, 0, 0))
|
343 |
return warning_img, None
|
344 |
|
345 |
# Prepare input parameters for the interactive functions
|
|
|
364 |
return interactive_infer_image(model, audio, image_input, task, refimg, reftxt, audio_pth, video_pth)
|
365 |
except Exception as e:
|
366 |
print(f"Error during inference: {e}")
|
|
|
367 |
traceback.print_exc()
|
368 |
warning_img = Image.new('RGB', (600, 400), color=(240, 240, 240))
|
369 |
d = ImageDraw.Draw(warning_img)
|
|
|
397 |
def preprocess(self, x):
|
398 |
return super().preprocess(x)
|
399 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
400 |
'''
|
401 |
launch app
|
402 |
'''
|
|
|
406 |
if model_loaded:
|
407 |
model_status = f"<span style=\"color:green;\">✓ Model loaded successfully</span> (SEEM {cur_model})"
|
408 |
else:
|
409 |
+
model_status = "<span style=\"color:orange;\">⚠ Running in demonstration mode</span> (model not loaded)"
|
410 |
|
411 |
description = f"""
|
412 |
<div style="text-align: center; font-weight: bold;">
|
|
|
422 |
</div>
|
423 |
"""
|
424 |
|
425 |
+
article = "SEEM Demo" + (" (Simplified Interface)" if not model_loaded else "")
|
426 |
inputs = [ImageMask(label="[Stroke] Draw on Image",type="pil"), gr.inputs.CheckboxGroup(choices=["Stroke", "Example", "Text", "Audio", "Video", "Panoptic"], type="value", label="Interative Mode"), ImageMask(label="[Example] Draw on Referring Image",type="pil"), gr.Textbox(label="[Text] Referring Text"), gr.Audio(label="[Audio] Referring Audio", source="microphone", type="filepath"), gr.Video(label="[Video] Referring Video Segmentation",format="mp4",interactive=True)]
|
427 |
gr.Interface(
|
428 |
fn=inference,
|
|
|
447 |
article=article,
|
448 |
allow_flagging='never',
|
449 |
cache_examples=False,
|
450 |
+
).launch()
|