Update app.py
Browse files
app.py
CHANGED
@@ -6,474 +6,119 @@
|
|
6 |
# Written by Xueyan Zou ([email protected]), Jianwei Yang ([email protected])
|
7 |
# --------------------------------------------------------
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
import os
|
12 |
import sys
|
13 |
import subprocess
|
14 |
-
import
|
15 |
-
import
|
16 |
-
|
17 |
-
|
18 |
-
#
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
class ImageList:
|
30 |
-
def __init__(self, *args, **kwargs):
|
31 |
-
pass
|
32 |
-
|
33 |
-
@staticmethod
|
34 |
-
def from_tensors(*args, **kwargs):
|
35 |
-
return ImageList()
|
36 |
-
|
37 |
-
class Instances:
|
38 |
-
def __init__(self, *args, **kwargs):
|
39 |
-
pass
|
40 |
-
|
41 |
-
class BitMasks:
|
42 |
-
def __init__(self, *args, **kwargs):
|
43 |
-
pass
|
44 |
-
|
45 |
-
@staticmethod
|
46 |
-
def from_polygon_masks(*args, **kwargs):
|
47 |
-
return BitMasks()
|
48 |
-
|
49 |
-
class BoxMode:
|
50 |
-
XYXY_ABS = 0
|
51 |
-
XYWH_ABS = 1
|
52 |
-
|
53 |
-
# Add mock detectron2 to sys.modules as a proper package
|
54 |
-
if 'detectron2' not in sys.modules:
|
55 |
-
import types
|
56 |
-
detectron2_module = types.ModuleType('detectron2')
|
57 |
-
structures_module = types.ModuleType('detectron2.structures')
|
58 |
-
sys.modules['detectron2'] = detectron2_module
|
59 |
-
sys.modules['detectron2.structures'] = structures_module
|
60 |
-
|
61 |
-
# Add classes to structures module
|
62 |
-
structures_module.Boxes = Boxes
|
63 |
-
structures_module.ImageList = ImageList
|
64 |
-
structures_module.Instances = Instances
|
65 |
-
structures_module.BitMasks = BitMasks
|
66 |
-
structures_module.BoxMode = BoxMode
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
os.makedirs('utils', exist_ok=True)
|
74 |
-
print("Created utils directory if it didn't exist")
|
75 |
-
|
76 |
-
# Create a custom distributed.py without mpi4py dependency
|
77 |
-
with open('utils/distributed.py', 'w') as f:
|
78 |
-
f.write("""# Custom distributed.py without mpi4py dependency
|
79 |
-
import os
|
80 |
-
import torch
|
81 |
-
import torch.distributed as dist
|
82 |
-
|
83 |
-
class MPI:
|
84 |
-
class COMM_WORLD:
|
85 |
-
@staticmethod
|
86 |
-
def Get_rank():
|
87 |
-
return 0
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
@staticmethod
|
94 |
-
def bcast(data, root=0):
|
95 |
-
return data
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
opt.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
111 |
-
opt.rank = 0
|
112 |
-
opt.world_size = 1
|
113 |
-
opt.gpu = 0
|
114 |
-
return opt
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
def all_gather(data):
|
131 |
-
return [data]
|
132 |
-
|
133 |
-
def reduce_dict(input_dict, average=True):
|
134 |
-
return input_dict
|
135 |
""")
|
136 |
-
|
137 |
-
|
138 |
-
# Ensure examples directory exists
|
139 |
-
os.makedirs('examples', exist_ok=True)
|
140 |
-
print("Created examples directory if it didn't exist")
|
141 |
-
|
142 |
-
# Create a minimal interactive.py in tasks directory
|
143 |
-
os.makedirs('tasks', exist_ok=True)
|
144 |
-
with open('tasks/interactive.py', 'w') as f:
|
145 |
-
f.write("""
|
146 |
-
import numpy as np
|
147 |
-
from PIL import Image, ImageDraw
|
148 |
-
|
149 |
-
def interactive_infer_image(model, audio_model, image, tasks, refimg=None, reftxt=None, audio_pth=None, video_pth=None):
|
150 |
-
# Get image dimensions
|
151 |
-
img = image['image']
|
152 |
-
h, w = img.size[1], img.size[0]
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
163 |
|
164 |
-
#
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
if ((x - center_x)**2 + (y - center_y)**2) < radius**2:
|
171 |
-
mask[y, x] = 255
|
172 |
-
|
173 |
-
return Image.fromarray(mask), None
|
174 |
-
|
175 |
-
def interactive_infer_video(model, audio_model, image, tasks, refimg=None, reftxt=None, audio_pth=None, video_pth=None):
|
176 |
-
# Just return the input video for demonstration
|
177 |
-
print("Called interactive_infer_video with tasks:", tasks)
|
178 |
-
if video_pth:
|
179 |
-
print("Video path:", video_pth)
|
180 |
-
return None, video_pth
|
181 |
-
""")
|
182 |
-
print("Created simplified interactive.py")
|
183 |
-
|
184 |
-
# Create some example placeholder files
|
185 |
-
example_files = [
|
186 |
-
'corgi1.webp', 'corgi2.jpg', 'river1.png', 'river2.png',
|
187 |
-
'zebras1.jpg', 'zebras2.jpg', 'fries1.png', 'fries2.png',
|
188 |
-
'placeholder.png', 'ref_vase.JPG'
|
189 |
-
]
|
190 |
-
|
191 |
-
placeholder_img = None
|
192 |
-
try:
|
193 |
-
from PIL import Image, ImageDraw
|
194 |
-
placeholder_img = Image.new('RGB', (400, 300), color=(240, 240, 240))
|
195 |
-
d = ImageDraw.Draw(placeholder_img)
|
196 |
-
d.text((150, 150), "Placeholder", fill=(0, 0, 0))
|
197 |
-
except Exception as e:
|
198 |
-
print(f"Error creating placeholder image: {e}")
|
199 |
-
|
200 |
-
for file_name in example_files:
|
201 |
-
file_path = os.path.join('examples', file_name)
|
202 |
-
if not os.path.exists(file_path) and placeholder_img is not None:
|
203 |
-
try:
|
204 |
-
placeholder_img.save(file_path)
|
205 |
-
print(f"Created {file_path}")
|
206 |
-
except Exception as e:
|
207 |
-
print(f"Error creating {file_path}: {e}")
|
208 |
-
|
209 |
-
# Create dummy audio/video files if needed
|
210 |
-
if not os.path.exists('examples/river1.wav'):
|
211 |
-
try:
|
212 |
-
with open('examples/river1.wav', 'wb') as f:
|
213 |
-
f.write(b'RIFF$\x00\x00\x00WAVEfmt \x10\x00\x00\x00\x01\x00\x01\x00\x00\x04\x00\x00\x00\x04\x00\x00\x01\x00\x08\x00data\x00\x00\x00\x00')
|
214 |
-
print("Created dummy audio file")
|
215 |
-
except Exception as e:
|
216 |
-
print(f"Error creating dummy audio file: {e}")
|
217 |
-
|
218 |
-
if not os.path.exists('examples/vasedeck.mp4'):
|
219 |
-
try:
|
220 |
-
with open('examples/vasedeck.mp4', 'wb') as f:
|
221 |
-
f.write(b'\x00\x00\x00\x18ftypmp42\x00\x00\x00\x00mp42mp41\x00\x00\x00\x00')
|
222 |
-
print("Created dummy video file")
|
223 |
-
except Exception as e:
|
224 |
-
print(f"Error creating dummy video file: {e}")
|
225 |
-
|
226 |
-
# Continue with regular imports
|
227 |
-
print("Importing required libraries...")
|
228 |
-
try:
|
229 |
-
import PIL
|
230 |
-
from PIL import Image, ImageDraw
|
231 |
-
import gradio as gr
|
232 |
-
import torch
|
233 |
-
import argparse
|
234 |
-
import numpy as np
|
235 |
-
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple
|
236 |
-
from gradio import processing_utils
|
237 |
-
|
238 |
-
print("Basic imports successful")
|
239 |
-
except Exception as e:
|
240 |
-
print(f"Error importing basic libraries: {e}")
|
241 |
-
traceback.print_exc()
|
242 |
-
sys.exit(1)
|
243 |
-
|
244 |
-
# Try to import specialized libraries but handle their absence gracefully
|
245 |
-
try:
|
246 |
-
import whisper
|
247 |
-
audio_loaded = True
|
248 |
-
print("Whisper loaded successfully")
|
249 |
-
except Exception as e:
|
250 |
-
print(f"Error loading whisper: {e}")
|
251 |
-
audio_loaded = False
|
252 |
-
|
253 |
-
# Global flags for model status
|
254 |
-
model_loaded = False
|
255 |
-
audio_loaded = audio_loaded if 'audio_loaded' in locals() else False
|
256 |
-
interactive_functions_imported = False
|
257 |
-
|
258 |
-
# Dummy constants if not available
|
259 |
-
try:
|
260 |
-
from utils.constants import COCO_PANOPTIC_CLASSES
|
261 |
-
print("Loaded COCO_PANOPTIC_CLASSES")
|
262 |
-
except ImportError:
|
263 |
-
print("Creating dummy COCO_PANOPTIC_CLASSES")
|
264 |
-
COCO_PANOPTIC_CLASSES = ["person", "cat", "dog", "car", "bicycle", "umbrella", "tree", "sky", "building"]
|
265 |
-
|
266 |
-
# Try to import the model but handle failures gracefully
|
267 |
-
try:
|
268 |
-
# Attempt to import specialized modules but don't fail if they're not available
|
269 |
-
try:
|
270 |
-
from modeling.BaseModel import BaseModel
|
271 |
-
from modeling import build_model
|
272 |
-
from utils.distributed import init_distributed
|
273 |
-
from utils.arguments import load_opt_from_config_files
|
274 |
-
print("Model imports successful")
|
275 |
-
|
276 |
-
# Try to import interactive functions
|
277 |
-
try:
|
278 |
-
from tasks.interactive import interactive_infer_image, interactive_infer_video
|
279 |
-
print("Successfully imported interactive functions from tasks.interactive")
|
280 |
-
interactive_functions_imported = True
|
281 |
-
except ImportError as e:
|
282 |
-
print(f"Error importing interactive functions: {e}")
|
283 |
-
interactive_functions_imported = False
|
284 |
-
|
285 |
-
# Try to set up the model
|
286 |
-
try:
|
287 |
-
parser = argparse.ArgumentParser('SEEM Demo', add_help=False)
|
288 |
-
parser.add_argument('--conf_files', default="configs/seem/focall_unicl_lang_demo.yaml", metavar="FILE", help='path to config file')
|
289 |
-
cfg = parser.parse_args()
|
290 |
-
|
291 |
-
opt = load_opt_from_config_files([cfg.conf_files])
|
292 |
-
opt = init_distributed(opt)
|
293 |
-
|
294 |
-
# META DATA
|
295 |
-
cur_model = 'None'
|
296 |
-
pretrained_pth = None
|
297 |
-
if 'focalt' in cfg.conf_files:
|
298 |
-
pretrained_pth = os.path.join("seem_focalt_v0.pt")
|
299 |
-
if not os.path.exists(pretrained_pth):
|
300 |
-
print(f"Downloading model file {pretrained_pth}...")
|
301 |
-
os.system("wget {}".format("https://huggingface.co/xdecoder/SEEM/resolve/main/seem_focalt_v0.pt"))
|
302 |
-
cur_model = 'Focal-T'
|
303 |
-
elif 'focal' in cfg.conf_files:
|
304 |
-
pretrained_pth = os.path.join("seem_focall_v0.pt")
|
305 |
-
if not os.path.exists(pretrained_pth):
|
306 |
-
print(f"Downloading model file {pretrained_pth}...")
|
307 |
-
os.system("wget {}".format("https://huggingface.co/xdecoder/SEEM/resolve/main/seem_focall_v0.pt"))
|
308 |
-
cur_model = 'Focal-L'
|
309 |
-
|
310 |
-
if pretrained_pth and os.path.exists(pretrained_pth):
|
311 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
312 |
-
print(f"Using device: {device}")
|
313 |
-
|
314 |
-
model = BaseModel(opt, build_model(opt)).from_pretrained(pretrained_pth).eval().to(device)
|
315 |
-
with torch.no_grad():
|
316 |
-
model.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(COCO_PANOPTIC_CLASSES + ["background"], is_eval=True)
|
317 |
-
print("Model loaded successfully")
|
318 |
-
model_loaded = True
|
319 |
-
else:
|
320 |
-
print(f"Model file not found: {pretrained_pth}")
|
321 |
-
model = None
|
322 |
-
model_loaded = False
|
323 |
-
except Exception as e:
|
324 |
-
print(f"Error setting up model: {e}")
|
325 |
-
traceback.print_exc()
|
326 |
-
model = None
|
327 |
-
model_loaded = False
|
328 |
-
except Exception as e:
|
329 |
-
print(f"Error during model import: {e}")
|
330 |
-
traceback.print_exc()
|
331 |
-
model = None
|
332 |
-
model_loaded = False
|
333 |
-
except Exception as e:
|
334 |
-
print(f"Error during model setup: {e}")
|
335 |
-
traceback.print_exc()
|
336 |
-
model = None
|
337 |
-
model_loaded = False
|
338 |
-
|
339 |
-
# If interactive functions weren't imported, define dummy versions
|
340 |
-
if not interactive_functions_imported:
|
341 |
-
print("Creating dummy interactive functions")
|
342 |
-
def interactive_infer_image(model, audio_model, image, tasks, refimg=None, reftxt=None, audio_pth=None, video_pth=None):
|
343 |
-
# Create a simple circle mask in the center
|
344 |
-
img = image['image']
|
345 |
-
h, w = img.size[1], img.size[0]
|
346 |
-
mask = np.zeros((h, w), dtype=np.uint8)
|
347 |
-
center_x, center_y = w//2, h//2
|
348 |
-
radius = min(w, h) // 4
|
349 |
-
for y in range(h):
|
350 |
-
for x in range(w):
|
351 |
-
if ((x - center_x)**2 + (y - center_y)**2) < radius**2:
|
352 |
-
mask[y, x] = 255
|
353 |
-
return Image.fromarray(mask), None
|
354 |
-
|
355 |
-
def interactive_infer_video(model, audio_model, image, tasks, refimg=None, reftxt=None, audio_pth=None, video_pth=None):
|
356 |
-
return None, video_pth
|
357 |
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
# Generate a simple mask based on the image size
|
366 |
-
if image is not None:
|
367 |
-
try:
|
368 |
-
h, w = image.size[1], image.size[0]
|
369 |
-
mask = np.zeros((h, w), dtype=np.uint8)
|
370 |
-
|
371 |
-
# Add a simple shape to the mask for demonstration
|
372 |
-
center_x, center_y = w//2, h//2
|
373 |
-
radius = min(w, h) // 4
|
374 |
-
for y in range(h):
|
375 |
-
for x in range(w):
|
376 |
-
if ((x - center_x)**2 + (y - center_y)**2) < radius**2:
|
377 |
-
mask[y, x] = 255
|
378 |
-
|
379 |
-
return Image.fromarray(mask), None
|
380 |
-
except Exception as e:
|
381 |
-
print(f"Error creating demo mask: {e}")
|
382 |
-
warning_img = Image.new('RGB', (600, 400), color=(240, 240, 240))
|
383 |
-
d = ImageDraw.Draw(warning_img)
|
384 |
-
d.text((50, 150), "Model could not be loaded.", fill=(255, 0, 0))
|
385 |
-
d.text((50, 200), "Using simplified interface for demonstration.", fill=(255, 0, 0))
|
386 |
-
return warning_img, None
|
387 |
-
|
388 |
-
warning_img = Image.new('RGB', (600, 400), color=(240, 240, 240))
|
389 |
-
d = ImageDraw.Draw(warning_img)
|
390 |
-
d.text((50, 150), "Model could not be loaded.", fill=(255, 0, 0))
|
391 |
-
d.text((50, 200), "Using simplified interface for demonstration.", fill=(255, 0, 0))
|
392 |
-
return warning_img, None
|
393 |
|
394 |
-
#
|
395 |
-
|
396 |
-
|
397 |
|
398 |
-
#
|
399 |
-
|
400 |
-
if
|
401 |
-
|
|
|
402 |
|
403 |
-
|
404 |
-
reftxt = kwargs.get("referring_text", "")
|
405 |
-
audio_pth = kwargs.get("referring_audio", None)
|
406 |
-
video_pth = kwargs.get("video", None)
|
407 |
|
408 |
-
#
|
|
|
|
|
|
|
409 |
try:
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
except Exception as e:
|
415 |
-
|
|
|
416 |
traceback.print_exc()
|
417 |
-
warning_img = Image.new('RGB', (600, 400), color=(240, 240, 240))
|
418 |
-
d = ImageDraw.Draw(warning_img)
|
419 |
-
d.text((50, 150), f"Error: {str(e)}", fill=(255, 0, 0))
|
420 |
-
d.text((50, 200), "Please check logs for details.", fill=(255, 0, 0))
|
421 |
-
return warning_img, None
|
422 |
-
|
423 |
-
'''
|
424 |
-
launch app
|
425 |
-
'''
|
426 |
-
title = "SEEM: Segment Everything Everywhere All At Once"
|
427 |
-
|
428 |
-
# Update description based on model loading status
|
429 |
-
if model_loaded:
|
430 |
-
model_status = f"<span style=\"color:green;\">✓ Model loaded successfully</span> (SEEM {cur_model})"
|
431 |
-
else:
|
432 |
-
model_status = "<span style=\"color:orange;\">⚠ Running in demonstration mode</span> (model not loaded)"
|
433 |
-
|
434 |
-
description = f"""
|
435 |
-
<div style="text-align: center; font-weight: bold;">
|
436 |
-
<span style="font-size: 18px" id="paper-info">
|
437 |
-
[<a href="https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once" target="_blank">GitHub</a>]
|
438 |
-
[<a href="https://arxiv.org/pdf/2304.06718.pdf" target="_blank">arXiv</a>]
|
439 |
-
</span>
|
440 |
-
</div>
|
441 |
-
<div style="text-align: left; font-weight: bold;">
|
442 |
-
<br>
|
443 |
-
🌪 Status: {model_status}
|
444 |
-
</p>
|
445 |
-
</div>
|
446 |
-
"""
|
447 |
-
|
448 |
-
article = "SEEM Demo" + (" (Simplified Interface)" if not model_loaded else "")
|
449 |
-
inputs = [
|
450 |
-
gr.Image(label="[Stroke] Draw on Image", type="pil"),
|
451 |
-
gr.CheckboxGroup(choices=["Stroke", "Example", "Text", "Audio", "Video", "Panoptic"], label="Interactive Mode"),
|
452 |
-
gr.Image(label="[Example] Draw on Referring Image", type="pil"),
|
453 |
-
gr.Textbox(label="[Text] Referring Text"),
|
454 |
-
gr.Audio(label="[Audio] Referring Audio", source="microphone", type="filepath"),
|
455 |
-
gr.Video(label="[Video] Referring Video Segmentation", format="mp4")
|
456 |
-
]
|
457 |
-
|
458 |
-
outputs = [
|
459 |
-
gr.outputs.Image(type="pil", label="Segmentation Results (COCO classes as label)"),
|
460 |
-
gr.outputs.Video(label="Video Segmentation Results (COCO classes as label)")
|
461 |
-
]
|
462 |
|
463 |
-
|
464 |
-
|
465 |
-
inputs=inputs,
|
466 |
-
outputs=outputs,
|
467 |
-
examples=[
|
468 |
-
["examples/corgi1.webp", ["Text"], "examples/corgi2.jpg", "The corgi.", None, None],
|
469 |
-
["examples/river1.png", ["Text", "Audio"], "examples/river2.png", "The green trees.", "examples/river1.wav", None],
|
470 |
-
["examples/zebras1.jpg", ["Example"], "examples/zebras2.jpg", "", None, None],
|
471 |
-
["examples/fries1.png", ["Example"], "examples/fries2.png", "", None, None],
|
472 |
-
["examples/placeholder.png", ["Video"], "examples/ref_vase.JPG", "", None, "examples/vasedeck.mp4"],
|
473 |
-
],
|
474 |
-
title=title,
|
475 |
-
description=description,
|
476 |
-
article=article,
|
477 |
-
allow_flagging='never',
|
478 |
-
cache_examples=False,
|
479 |
-
).launch()
|
|
|
6 |
# Written by Xueyan Zou ([email protected]), Jianwei Yang ([email protected])
|
7 |
# --------------------------------------------------------
|
8 |
|
9 |
+
# Hugging Face Spaces Launcher
|
|
|
10 |
import os
|
11 |
import sys
|
12 |
import subprocess
|
13 |
+
import importlib.util
|
14 |
+
import logging
|
15 |
+
import time
|
16 |
+
|
17 |
+
# Configure logging
|
18 |
+
logging.basicConfig(level=logging.INFO,
|
19 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
20 |
+
logger = logging.getLogger("SEEM-HF")
|
21 |
+
|
22 |
+
def run_command(cmd, description=None):
|
23 |
+
"""Run a shell command and log its output"""
|
24 |
+
if description:
|
25 |
+
logger.info(f"Running: {description}")
|
26 |
+
logger.info(f"Command: {cmd}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
try:
|
29 |
+
process = subprocess.Popen(
|
30 |
+
cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT,
|
31 |
+
universal_newlines=True
|
32 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
# Stream and log output in real-time
|
35 |
+
for line in process.stdout:
|
36 |
+
line = line.rstrip()
|
37 |
+
logger.info(line)
|
|
|
|
|
|
|
38 |
|
39 |
+
process.wait()
|
40 |
+
return process.returncode == 0
|
41 |
+
except Exception as e:
|
42 |
+
logger.error(f"Error executing command: {e}")
|
43 |
+
return False
|
44 |
+
|
45 |
+
def install_dependencies():
|
46 |
+
"""Install required dependencies"""
|
47 |
+
# Check if ffmpeg is installed
|
48 |
+
logger.info("Checking for ffmpeg...")
|
49 |
+
if not run_command("which ffmpeg", "Checking ffmpeg"):
|
50 |
+
logger.info("Installing ffmpeg...")
|
51 |
+
run_command("apt-get update && apt-get install -y ffmpeg", "Installing ffmpeg")
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
# Install Python dependencies
|
54 |
+
logger.info("Installing Python dependencies...")
|
55 |
+
if os.path.exists("assets/requirements/requirements.txt"):
|
56 |
+
run_command("pip install -r assets/requirements/requirements.txt", "Installing base requirements")
|
57 |
+
else:
|
58 |
+
logger.warning("Base requirements file not found, creating minimal requirements")
|
59 |
+
with open("requirements.txt", "w") as f:
|
60 |
+
f.write("""torch>=1.12.0
|
61 |
+
torchvision>=0.13.0
|
62 |
+
opencv-python-headless>=4.5.0
|
63 |
+
numpy>=1.23.5
|
64 |
+
gradio>=3.13.0
|
65 |
+
Pillow>=9.0.0
|
66 |
+
openai-whisper
|
|
|
|
|
|
|
|
|
|
|
67 |
""")
|
68 |
+
run_command("pip install -r requirements.txt", "Installing minimal requirements")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
if os.path.exists("assets/requirements/requirements_custom.txt"):
|
71 |
+
run_command("pip install -r assets/requirements/requirements_custom.txt", "Installing custom requirements")
|
72 |
+
|
73 |
+
def setup_environment():
|
74 |
+
"""Set up the necessary directories and environment"""
|
75 |
+
# Create necessary directories
|
76 |
+
os.makedirs('utils', exist_ok=True)
|
77 |
+
os.makedirs('modeling', exist_ok=True)
|
78 |
+
os.makedirs('modeling/architectures', exist_ok=True)
|
79 |
+
os.makedirs('tasks', exist_ok=True)
|
80 |
+
os.makedirs('examples', exist_ok=True)
|
81 |
+
logger.info("Created required directories")
|
82 |
|
83 |
+
# Make sure demo/seem directory exists
|
84 |
+
if not os.path.exists("demo/seem"):
|
85 |
+
logger.error("demo/seem directory not found!")
|
86 |
+
return False
|
87 |
+
|
88 |
+
return True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
def main():
|
91 |
+
"""Main entry point"""
|
92 |
+
logger.info("Starting SEEM Hugging Face Space")
|
93 |
+
|
94 |
+
# Install dependencies
|
95 |
+
install_dependencies()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
+
# Setup environment
|
98 |
+
if not setup_environment():
|
99 |
+
return
|
100 |
|
101 |
+
# Prepare to run the actual app
|
102 |
+
app_path = "demo/seem/app.py"
|
103 |
+
if not os.path.exists(app_path):
|
104 |
+
logger.error(f"Application file not found at {app_path}!")
|
105 |
+
return
|
106 |
|
107 |
+
logger.info(f"Loading application from {app_path}")
|
|
|
|
|
|
|
108 |
|
109 |
+
# Add the demo directory to Python path
|
110 |
+
sys.path.insert(0, os.path.abspath('demo'))
|
111 |
+
|
112 |
+
# Load and run the app module
|
113 |
try:
|
114 |
+
spec = importlib.util.spec_from_file_location("seem_app", app_path)
|
115 |
+
seem_app = importlib.util.module_from_spec(spec)
|
116 |
+
spec.loader.exec_module(seem_app)
|
117 |
+
logger.info("SEEM application loaded successfully")
|
118 |
except Exception as e:
|
119 |
+
logger.error(f"Error loading application: {e}")
|
120 |
+
import traceback
|
121 |
traceback.print_exc()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
+
if __name__ == "__main__":
|
124 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|