skallewag commited on
Commit
bdec3d7
·
verified ·
1 Parent(s): fe7148c

Upload 247 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +43 -0
  2. LICENSE +201 -0
  3. README.md +184 -12
  4. __init__.py +0 -0
  5. assets/.DS_Store +0 -0
  6. assets/images/audio.png +3 -0
  7. assets/images/click.png +3 -0
  8. assets/images/click2mask.png +3 -0
  9. assets/images/compare.jpg +0 -0
  10. assets/images/compare_with_sam.jpg +3 -0
  11. assets/images/emoj.png +3 -0
  12. assets/images/emoj_scrib_draw.png +3 -0
  13. assets/images/emoj_v1.jpg +3 -0
  14. assets/images/emoj_v1_seg.png +0 -0
  15. assets/images/fox.png +3 -0
  16. assets/images/fox_v2.png +3 -0
  17. assets/images/intro.png +3 -0
  18. assets/images/method_xyz.png +3 -0
  19. assets/images/minecraft.png +3 -0
  20. assets/images/model.jpg +3 -0
  21. assets/images/model.png +3 -0
  22. assets/images/ref_seg.png +3 -0
  23. assets/images/ref_seg_xyz.png +3 -0
  24. assets/images/referring_video_visualize.png +3 -0
  25. assets/images/spatial_relation.png +3 -0
  26. assets/images/teaser.png +3 -0
  27. assets/images/teaser_new.png +3 -0
  28. assets/images/text.png +3 -0
  29. assets/images/transformers_gh.png +3 -0
  30. assets/images/trees_text.png +3 -0
  31. assets/readmes/DATASET.md +112 -0
  32. assets/readmes/EVAL.md +136 -0
  33. assets/readmes/INSTALL.md +73 -0
  34. assets/readmes/TRAIN.md +205 -0
  35. assets/requirements/requirements.txt +34 -0
  36. assets/requirements/requirements_custom.txt +3 -0
  37. assets/scripts/run_demo.sh +5 -0
  38. configs/.DS_Store +0 -0
  39. configs/seem/davitd3_unicl_lang_v1.yaml +396 -0
  40. configs/seem/davitd5_unicl_lang_v1.yaml +396 -0
  41. configs/seem/focall_unicl_lang_demo.yaml +197 -0
  42. configs/seem/focall_unicl_lang_v0.yaml +401 -0
  43. configs/seem/focall_unicl_lang_v1.yaml +401 -0
  44. configs/seem/focalt_unicl_lang_demo.yaml +197 -0
  45. configs/seem/focalt_unicl_lang_v0.yaml +401 -0
  46. configs/seem/focalt_unicl_lang_v1.yaml +401 -0
  47. configs/seem/samvitb_unicl_lang_v1.yaml +385 -0
  48. configs/seem/samvitl_unicl_lang_v1.yaml +386 -0
  49. configs/xdecoder/davitd3_unicl_lang.yaml +373 -0
  50. configs/xdecoder/davitd5_unicl_lang.yaml +373 -0
.gitattributes CHANGED
@@ -33,3 +33,46 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ assets/images/audio.png filter=lfs diff=lfs merge=lfs -text
37
+ assets/images/click.png filter=lfs diff=lfs merge=lfs -text
38
+ assets/images/click2mask.png filter=lfs diff=lfs merge=lfs -text
39
+ assets/images/compare_with_sam.jpg filter=lfs diff=lfs merge=lfs -text
40
+ assets/images/emoj_scrib_draw.png filter=lfs diff=lfs merge=lfs -text
41
+ assets/images/emoj_v1.jpg filter=lfs diff=lfs merge=lfs -text
42
+ assets/images/emoj.png filter=lfs diff=lfs merge=lfs -text
43
+ assets/images/fox_v2.png filter=lfs diff=lfs merge=lfs -text
44
+ assets/images/fox.png filter=lfs diff=lfs merge=lfs -text
45
+ assets/images/intro.png filter=lfs diff=lfs merge=lfs -text
46
+ assets/images/method_xyz.png filter=lfs diff=lfs merge=lfs -text
47
+ assets/images/minecraft.png filter=lfs diff=lfs merge=lfs -text
48
+ assets/images/model.jpg filter=lfs diff=lfs merge=lfs -text
49
+ assets/images/model.png filter=lfs diff=lfs merge=lfs -text
50
+ assets/images/ref_seg_xyz.png filter=lfs diff=lfs merge=lfs -text
51
+ assets/images/ref_seg.png filter=lfs diff=lfs merge=lfs -text
52
+ assets/images/referring_video_visualize.png filter=lfs diff=lfs merge=lfs -text
53
+ assets/images/spatial_relation.png filter=lfs diff=lfs merge=lfs -text
54
+ assets/images/teaser_new.png filter=lfs diff=lfs merge=lfs -text
55
+ assets/images/teaser.png filter=lfs diff=lfs merge=lfs -text
56
+ assets/images/text.png filter=lfs diff=lfs merge=lfs -text
57
+ assets/images/transformers_gh.png filter=lfs diff=lfs merge=lfs -text
58
+ assets/images/trees_text.png filter=lfs diff=lfs merge=lfs -text
59
+ demo/seem/examples/fries1.png filter=lfs diff=lfs merge=lfs -text
60
+ demo/seem/examples/fries2.png filter=lfs diff=lfs merge=lfs -text
61
+ demo/seem/examples/minecraft1.jpg filter=lfs diff=lfs merge=lfs -text
62
+ demo/seem/examples/ref_vase.JPG filter=lfs diff=lfs merge=lfs -text
63
+ demo/seem/examples/river1.png filter=lfs diff=lfs merge=lfs -text
64
+ demo/seem/examples/river1.wav filter=lfs diff=lfs merge=lfs -text
65
+ demo/seem/examples/river2.png filter=lfs diff=lfs merge=lfs -text
66
+ demo/seem/examples/vasedeck.mp4 filter=lfs diff=lfs merge=lfs -text
67
+ inference/images/animals.png filter=lfs diff=lfs merge=lfs -text
68
+ inference/images/coco/000.jpg filter=lfs diff=lfs merge=lfs -text
69
+ inference/images/coco/001.jpg filter=lfs diff=lfs merge=lfs -text
70
+ inference/images/coco/002.jpg filter=lfs diff=lfs merge=lfs -text
71
+ inference/images/landscape.jpg filter=lfs diff=lfs merge=lfs -text
72
+ inference/images/mountain.jpeg filter=lfs diff=lfs merge=lfs -text
73
+ inference/images/owls.jpeg filter=lfs diff=lfs merge=lfs -text
74
+ inference/images/penguin.jpeg filter=lfs diff=lfs merge=lfs -text
75
+ inference/images/region_retrieval.png filter=lfs diff=lfs merge=lfs -text
76
+ inference/images/rose.webp filter=lfs diff=lfs merge=lfs -text
77
+ inference/images/street.jpg filter=lfs diff=lfs merge=lfs -text
78
+ inference/images/teaser_new.png filter=lfs diff=lfs merge=lfs -text
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
README.md CHANGED
@@ -1,12 +1,184 @@
1
- ---
2
- title: SEEM
3
- emoji: 🚀
4
- colorFrom: gray
5
- colorTo: indigo
6
- sdk: gradio
7
- sdk_version: 5.31.0
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 👀*SEEM:* Segment Everything Everywhere All at Once
2
+
3
+ :grapes: \[[Read our arXiv Paper](https://arxiv.org/pdf/2304.06718.pdf)\]   :apple: \[[Try our Demo](http://semantic-sam.xyzou.net:6090/)\]
4
+
5
+ We introduce **SEEM** that can **S**egment **E**verything **E**verywhere with **M**ulti-modal prompts all at once. SEEM allows users to easily segment an image using prompts of different types including visual prompts (points, marks, boxes, scribbles and image segments) and language prompts (text and audio), etc. It can also work with any combination of prompts or generalize to custom prompts!
6
+
7
+ by [Xueyan Zou*](https://maureenzou.github.io/), [Jianwei Yang*](https://jwyang.github.io/), [Hao Zhang*](https://scholar.google.com/citations?user=B8hPxMQAAAAJ&hl=en), [Feng Li*](https://fengli-ust.github.io/), [Linjie Li](https://scholar.google.com/citations?user=WR875gYAAAAJ&hl=en), [Jianfeng Wang](http://jianfengwang.me/), [Lijuan Wang](https://scholar.google.com/citations?user=cDcWXuIAAAAJ&hl=zh-CN), [Jianfeng Gao^](https://www.microsoft.com/en-us/research/people/jfgao/?from=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fum%2Fpeople%2Fjfgao%2F), [Yong Jae Lee^](https://pages.cs.wisc.edu/~yongjaelee/), in **NeurIPS 2023**.
8
+
9
+ A brief introduction of all the generic and interactive segmentation tasks we can do!
10
+
11
+ ![SEEM design](assets/images/teaser_new.png?raw=true)
12
+
13
+ ## :rocket: Updates
14
+ * **[2023.11.2]** SEEM is applied in [LLaVA-Interactive](https://llava-vl.github.io/llava-interactive/): an all-in-one demo for Image Chat, Segmentation, Generation and Editing. Experience the future of interactive image editing with visual chat.
15
+ [[Project Page](https://llava-vl.github.io/llava-interactive/)] [[Demo](https://6dd3-20-163-117-69.ngrok-free.app/)] [[Code](https://github.com/LLaVA-VL/LLaVA-Interactive-Demo)] [[Paper](https://arxiv.org/abs/2311.00571)]
16
+ * **[2023.10.23]** SEEM is used in [Set-of-Mark Prompting](https://som-gpt4v.github.io/): a brand-new visual prompting technique for GPT-4V! It totally unleashes the extraordinary visual grounding power of GPT-4V!
17
+ [[Project Page](https://github.com/microsoft/SoM)] [[Code](https://github.com/microsoft/SoM)] [[Paper](https://arxiv.org/abs/2310.11441)]
18
+ * **[2023.10.10]** We release the training [log](https://huggingface.co/xdecoder/SEEM/raw/main/seem_v1_focall_unicl.log) for SEEM-Large-v1 and [log](https://huggingface.co/xdecoder/SEEM/raw/main/seem_v1_focalt_unicl.log) for SEEM-Tiny-v1!
19
+ * **[2023.10.04]** We are excited to release :white_check_mark: [training/evaluation/demo code](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once/edit/v1.0/README.md#bookmark_tabs-catalog), :white_check_mark: [new checkpoints](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once/edit/v1.0/README.md#bookmark_tabs-catalog), and :white_check_mark: [comprehensive readmes](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once/edit/v1.0/README.md#bookmark_tabs-catalog) for ***both X-Decoder and SEEM***!
20
+ * **[2023.09.25]** Our work has been accepted to NeurIPS 2023!
21
+ * **[2023.07.27]** We are excited to release our [X-Decoder](https://github.com/microsoft/X-Decoder) training code! We will release its descendant SEEM training code very soon!
22
+ * **[2023.07.10]** We release [Semantic-SAM](https://github.com/UX-Decoder/Semantic-SAM), a universal image segmentation model to enable segment and recognize anything at any desired granularity. Code and checkpoint are available!
23
+ * **[2023.05.02]** We have released the [SEEM Focal-L](https://projects4jw.blob.core.windows.net/x-decoder/release/seem_focall_v1.pt) and [X-Decoder Focal-L](https://projects4jw.blob.core.windows.net/x-decoder/release/xdecoder_focall_last.pt) checkpoints and [configs](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once/blob/main/demo_code/configs/seem/seem_focall_lang.yaml)!
24
+ * **[2023.04.28]** We have updated the [ArXiv](https://arxiv.org/pdf/2304.06718.pdf) that shows *better interactive segmentation results than SAM*, which trained on x50 more data than us!
25
+ * **[2023.04.26]** We have released the [Demo Code](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once/tree/main/demo_code) and [SEEM-Tiny Checkpoint](https://projects4jw.blob.core.windows.net/x-decoder/release/seem_focalt_v1.pt)! Please try the One-Line Started!
26
+ * **[2023.04.20]** SEEM Referring Video Segmentation is out! Please try the [Video Demo](https://huggingface.co/spaces/xdecoder/SEEM) and take a look at the [NERF examples](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once#tulip-nerf-examples).
27
+
28
+ ## :bookmark_tabs: Catalog
29
+ We release the following contents for **both SEEM and X-Decoder**:exclamation:
30
+ - [x] Demo Code
31
+ - [x] Model Checkpoint
32
+ - [x] Comprehensive User Guide
33
+ - [x] Training Code
34
+ - [x] Evaluation Code
35
+
36
+ :point_right: **One-Line SEEM Demo with Linux:**
37
+ ```sh
38
+ git clone [email protected]:UX-Decoder/Segment-Everything-Everywhere-All-At-Once.git && sh assets/scripts/run_demo.sh
39
+ ```
40
+
41
+ :round_pushpin: *[New]* **Getting Started:**
42
+
43
+ * [INSTALL.md](assets/readmes/INSTALL.md) <br>
44
+ * [DATASET.md](assets/readmes/DATASET.md) <br>
45
+ * [TRAIN.md](assets/readmes/TRAIN.md) <br>
46
+ * [EVAL.md](assets/readmes/EVAL.md)
47
+
48
+ :round_pushpin: *[New]* **Latest Checkpoints and Numbers:**
49
+ | | | | COCO | | | Ref-COCOg | | | VOC | | SBD | |
50
+ |-----------------|---------------------------------------------------------------------------------------------|------------|------|------|------|-----------|------|------|-------|-------|-------|-------|
51
+ | Method | Checkpoint | Backbone | PQ &uarr; | mAP &uarr; | mIoU &uarr; | cIoU &uarr; | mIoU &uarr; | AP50 &uarr; | NoC85 &darr; | NoC90 &darr;| NoC85 &darr;| NoC90 &darr;|
52
+ | X-Decoder | [ckpt](https://huggingface.co/xdecoder/X-Decoder/resolve/main/xdecoder_focalt_last.pt) | Focal-T | 50.8 | 39.5 | 62.4 | 57.6 | 63.2 | 71.6 | - | - | - | - |
53
+ | X-Decoder-oq201 | [ckpt](https://huggingface.co/xdecoder/X-Decoder/resolve/main/xdecoder_focall_last.pt) | Focal-L | 56.5 | 46.7 | 67.2 | 62.8 | 67.5 | 76.3 | - | - | - | - |
54
+ | SEEM_v0 | [ckpt](https://huggingface.co/xdecoder/SEEM/resolve/main/seem_focalt_v0.pt) | Focal-T | 50.6 | 39.4 | 60.9 | 58.5 | 63.5 | 71.6 | 3.54 | 4.59 | * | * |
55
+ | SEEM_v0 | - | Davit-d3 | 56.2 | 46.8 | 65.3 | 63.2 | 68.3 | 76.6 | 2.99 | 3.89 | 5.93 | 9.23 |
56
+ | SEEM_v0 | [ckpt](https://huggingface.co/xdecoder/SEEM/resolve/main/seem_focall_v0.pt) | Focal-L | 56.2 | 46.4 | 65.5 | 62.8 | 67.7 | 76.2 | 3.04 | 3.85 | * | * |
57
+ | SEEM_v1 | [ckpt](https://huggingface.co/xdecoder/SEEM/resolve/main/seem_samvitb_v1.pt) | SAM-ViT-B | 52.0 | 43.5 | 60.2 | 54.1 | 62.2 | 69.3 | 2.53 | 3.23 | * | * |
58
+ | SEEM_v1 | [ckpt](https://huggingface.co/xdecoder/SEEM/resolve/main/seem_samvitl_v1.pt) | SAM-ViT-L | 49.0 | 41.6 | 58.2 | 53.8 | 62.2 | 69.5 | 2.40 | 2.96 | * | * |
59
+ | SEEM_v1 | [ckpt](https://huggingface.co/xdecoder/SEEM/resolve/main/seem_focalt_v1.pt)/[log](https://huggingface.co/xdecoder/SEEM/raw/main/seem_v1_focalt_unicl.log) | Focal-T | 50.8 | 39.4 | 60.7 | 58.5 | 63.7 | 72.0 | 3.19 | 4.13 | * | * |
60
+ | SEEM_v1 | [ckpt](https://huggingface.co/xdecoder/SEEM/blob/main/seem_focall_v1.pt)/[log](https://huggingface.co/xdecoder/SEEM/blob/main/seem_v1_focall_unicl.log) | Focal-L | 56.1 | 46.3 | 65.8 | 62.4 | 67.8 | 76.0 | 2.66 | 3.44 | * | * |
61
+
62
+ **SEEM_v0:** Supporting Single Interactive object training and inference <br>
63
+ **SEEM_v1:** Supporting Multiple Interactive objects training and inference
64
+
65
+ <div align="center">
66
+ <img src="https://user-images.githubusercontent.com/11957155/233255289-35c0c1e2-35f7-48e4-a7e9-68da50c839d3.gif" width="400" />
67
+ <img src="https://user-images.githubusercontent.com/11957155/233526415-a0a44963-19a3-4e56-965a-afaa598e6127.gif" width="400" />
68
+ </div>
69
+
70
+ :fire: **Related projects:**
71
+
72
+ * [FocalNet](https://github.com/microsoft/FocalNet) and [DaViT](https://github.com/dingmyu/davit) : We used FocalNet and DaViT as the vision backbones.
73
+ * [UniCL](https://github.com/microsoft/UniCL) : We used unified contrastive learning technique for learning image-text representations.
74
+ * [X-Decoder](https://github.com/microsoft/X-Decoder) : We built SEEM based on X-Decoder which is a generalist decoder that can do multiple tasks with one model only.
75
+
76
+ :fire: **Other projects you may find interesting:**
77
+ * [Semantic-SAM](https://github.com/UX-Decoder/Semantic-SAM), a universal image segmentation model to enable segment and recognize anything at any desired granularity
78
+ * [OpenSeed](https://github.com/IDEA-Research/OpenSeeD) : Strong open-set segmentation methods.
79
+ * [Grounding SAM](https://github.com/IDEA-Research/Grounded-Segment-Anything) : Combining Grounding DINO and Segment Anything; [Grounding DINO](https://github.com/IDEA-Research/GroundingDINO): A strong open-set detection model.
80
+ * [X-GPT](https://github.com/microsoft/X-Decoder/tree/xgpt) : Conversational Visual Agent supported by X-Decoder.
81
+ * [LLaVA](https://github.com/haotian-liu/LLaVA) : Large Language and Vision Assistant.
82
+
83
+ ## :bulb: Highlights
84
+ Inspired by the appealing universal interface in LLMs, we are advocating a universal, interactive multi-modal interface for any type of segmentation with **ONE SINGLE MODEL**. We emphasize **4** important features of **SEEM** below.
85
+ 1. **Versatility**: work with various types of prompts, for example, clicks, boxes, polygons, scribbles, texts, and referring image;
86
+ 2. **Compositionaliy**: deal with any compositions of prompts;
87
+ 3. **Interactivity**: interact with user in multi-rounds, thanks to the memory prompt of **SEEM** to store the session history;
88
+ 4. **Semantic awareness**: give a semantic label to any predicted mask;
89
+
90
+ ## :unicorn: How to use the demo
91
+ - Try our default examples first;
92
+ - Upload an image;
93
+ - Select at least one type of prompt of your choice (If you want to use referred region of another image please check "Example" and upload another image in referring image panel);
94
+ - Remember to provide the actual prompt for each prompt type you select, otherwise you will meet an error (e.g., remember to draw on the referring image);
95
+ - Our model by default support the **vocabulary** of COCO 80 categories, others will be classified to 'others' or misclassified. If you want to segment using open-vocabulary labels, include the text label in 'text' button after drawing scribbles.
96
+ - Click "Submit" and wait for a few seconds.
97
+
98
+ ## :volcano: An interesting example
99
+ An example of Transformers. The referred image is the truck form of Optimus Prime. Our model can always segment Optimus Prime in target images no matter which form it is in. Thanks Hongyang Li for this fun example.
100
+
101
+ <div align="center">
102
+ <img src="assets/images/transformers_gh.png" width = "700" alt="assets/images/transformers_gh.png" align=center />
103
+ </div>
104
+
105
+ ## :tulip: NERF Examples
106
+ * Inspired by the example in [SA3D](https://github.com/Jumpat/SegmentAnythingin3D), we tried SEEM on NERF Examples and works well :)
107
+
108
+ <div align="center">
109
+ <img src="https://user-images.githubusercontent.com/11957155/234230320-2189056d-1c89-4f0c-88da-851d12e8323c.gif" width="400" />
110
+ <img src="https://user-images.githubusercontent.com/11957155/234231284-0adc4bae-ef90-41d3-9883-41f6407a883b.gif" width="400" />
111
+ </div>
112
+
113
+ ## :camping: Click, scribble to mask
114
+ With a simple click or stoke from the user, we can generate the masks and the corresponding category labels for it.
115
+
116
+ ![SEEM design](assets/images/click.png?raw=true)
117
+ ## :mountain_snow: Text to mask
118
+ SEEM can generate the mask with text input from the user, providing multi-modality interaction with human.
119
+
120
+ ![example](assets/images/text.png?raw=true)
121
+ <!--
122
+ <div align="center">
123
+ <img src="assets/images/text.png" width = "700" alt="assets/images/text.png" align=center />
124
+ </div> -->
125
+
126
+ ## :mosque: Referring image to mask
127
+ With a simple click or stroke on the referring image, the model is able to segment the objects with similar semantics on the target images.
128
+ ![example](assets/images/ref_seg.png?raw=true)
129
+
130
+ SEEM understands the spatial relationship very well. Look at the three zebras! The segmented zebras have similar positions with the referred zebras. For example, when the leftmost zebra is referred on the upper row, the leftmost zebra on the bottom row is segmented.
131
+ ![example](assets/images/spatial_relation.png?raw=true)
132
+
133
+ ## :blossom: Referring image to video mask
134
+ No training on video data needed, SEEM works perfectly for you to segment videos with whatever queries you specify!
135
+ ![example](assets/images/referring_video_visualize.png?raw=true)
136
+
137
+ ## :sunflower: Audio to mask
138
+ We use Whisper to turn audio into text prompt to segment the object. Try it in our demo!
139
+
140
+ <div align="center">
141
+ <img src="assets/images/audio.png" width = "900" alt="assets/images/audio.png" align=center />
142
+ </div>
143
+
144
+ <!-- ## 🔥 Combination of different prompts to mask -->
145
+
146
+ ## :deciduous_tree: Examples of different styles
147
+ An example of segmenting a meme.
148
+ <div align="center">
149
+ <img src="assets/images/emoj.png" width = "500" alt="assets/images/emoj.png" align=center />
150
+ </div>
151
+
152
+ An example of segmenting trees in cartoon style.
153
+ <div align="center">
154
+ <img src="assets/images/trees_text.png" width = "700" alt="assets/images/trees_text.png" align=center />
155
+ </div>
156
+
157
+ An example of segmenting a Minecraft image.
158
+ <div align="center">
159
+ <img src="assets/images/minecraft.png" width = "700" alt="assets/images/minecraft.png" align=center />
160
+ </div>
161
+ <!-- ![example](assets/images/minecraft.png?raw=true) -->
162
+ An example of using referring image on a popular teddy bear.
163
+
164
+ ![example](assets/images/fox_v2.png?raw=true)
165
+
166
+ ## Model
167
+ ![SEEM design](assets/images/model.png?raw=true)
168
+
169
+ ## Comparison with SAM
170
+ In the following figure, we compare the levels of interaction and semantics of three segmentation tasks (edge detection, open-set, and interactive segmentation). Open-set Segmentation usually requires a high level of semantics and does not require interaction. Compared with [SAM](https://arxiv.org/abs/2304.02643), SEEM covers a wider range of interaction and semantics levels. For example, SAM only supports limited interaction types like points and boxes, while misses high-semantic tasks since it does not output semantic labels itself. The reasons are: First, SEEM has a unified prompt encoder that encodes all visual and language prompts into a joint representation space. In consequence, SEEM can support more general usages. It has potential to extend to custom prompts. Second, SEEM works very well on text to mask (grounding segmentation) and outputs semantic-aware predictions.
171
+ <div align="center">
172
+ <img src="assets/images/compare.jpg" width = "500" alt="assets/images/compare.jpg" align=center />
173
+ </div>
174
+ <!-- This figure shows a comparison of our model with concurrent work SAM on the level of interactions and semantics. The x-axis and y-axis denote the level of interaction and semantics, respectively. Three segmentation tasks are shown, including Open-set Segmentation, Edge detection, and Interactive Segmentation. These tasks have different levels of interactions and semantics. For example, Open-set Segmentation usually requires a high level of semantics and does not require interaction. Compared with SAM, our model covers a wider range of interaction and semantics levels. For example, SAM only supports limited interaction types like points and boxes, while misses high-semantic tasks since it does not output semantic labels itself. Note that although we do not report edge detection results, our model can support it by simply converting masks to edges. -->
175
+
176
+ ## :cupid: Acknowledgements
177
+ - We appreciate hugging face for the GPU support on demo!
178
+
179
+
180
+ <!-- ## Citation (update when paper is available on arxiv)
181
+ If you find this project helpful for your research, please consider citing the following BibTeX entry.
182
+ ```BibTex
183
+
184
+ ``` -->
__init__.py ADDED
File without changes
assets/.DS_Store ADDED
Binary file (6.15 kB). View file
 
assets/images/audio.png ADDED

Git LFS Details

  • SHA256: 7af4c111c64b03262d55a18c8af90c44daea477064ba3326cc935baff9d3d104
  • Pointer size: 132 Bytes
  • Size of remote file: 4.91 MB
assets/images/click.png ADDED

Git LFS Details

  • SHA256: aba12a8cf169e3bef4a2e3205dbfb0655292f4a71b18652060e8806bf3cd28a6
  • Pointer size: 132 Bytes
  • Size of remote file: 7.99 MB
assets/images/click2mask.png ADDED

Git LFS Details

  • SHA256: c69efc5141136f42396945d298c8884826edd28490a1476d2191ca5e81513677
  • Pointer size: 132 Bytes
  • Size of remote file: 6.04 MB
assets/images/compare.jpg ADDED
assets/images/compare_with_sam.jpg ADDED

Git LFS Details

  • SHA256: 0300868a0b7ff0fb6e3f4c2a993ac15a58a7f41e5c0f4970845b69b3f2050de7
  • Pointer size: 131 Bytes
  • Size of remote file: 102 kB
assets/images/emoj.png ADDED

Git LFS Details

  • SHA256: 3aa3fcf9aeeb20a65871457e01e3598a86381b0b6ba3513069b963d3f478d3df
  • Pointer size: 131 Bytes
  • Size of remote file: 694 kB
assets/images/emoj_scrib_draw.png ADDED

Git LFS Details

  • SHA256: d0063cc0a7e4fba0cbf2bcb38b9daebf4c0bd537ab59a5cfcc1fe7a34facfb02
  • Pointer size: 131 Bytes
  • Size of remote file: 356 kB
assets/images/emoj_v1.jpg ADDED

Git LFS Details

  • SHA256: 6fdaf0a08a7afee18fdff59969bc4a4c1f62532a146b3b0178b59e58fc4e376b
  • Pointer size: 131 Bytes
  • Size of remote file: 212 kB
assets/images/emoj_v1_seg.png ADDED
assets/images/fox.png ADDED

Git LFS Details

  • SHA256: 7183db2962bf288b958abbd32e0a34788b578a388fb6ef8f461d7dc06dab50e7
  • Pointer size: 132 Bytes
  • Size of remote file: 1.36 MB
assets/images/fox_v2.png ADDED

Git LFS Details

  • SHA256: fa2ba87ed584e78b753dc9a5925292c01db4847a5f30b0bd01340d483949d32a
  • Pointer size: 132 Bytes
  • Size of remote file: 1.5 MB
assets/images/intro.png ADDED

Git LFS Details

  • SHA256: 103f7e872abe04ff72c5cf3bf9726f6d433d708303f652850eb195a9ad8469e7
  • Pointer size: 132 Bytes
  • Size of remote file: 5.95 MB
assets/images/method_xyz.png ADDED

Git LFS Details

  • SHA256: 818dc6e4cd71b0c755bfeb1638b2da1cca64c81c508bbafe25533c5892ae2443
  • Pointer size: 131 Bytes
  • Size of remote file: 635 kB
assets/images/minecraft.png ADDED

Git LFS Details

  • SHA256: 1f78c0572a73da4df9bedf4783fa86fcb8c4dee7825ce69298addd3b7c926a49
  • Pointer size: 132 Bytes
  • Size of remote file: 4.36 MB
assets/images/model.jpg ADDED

Git LFS Details

  • SHA256: b5b0a46f33998e9f03e48f9f84f040514e8a2be143ca040a659de724b06f6d52
  • Pointer size: 131 Bytes
  • Size of remote file: 503 kB
assets/images/model.png ADDED

Git LFS Details

  • SHA256: 8cf8a01e6688d6cb6e8dadec03f2784aaf1f912b40ffae19a96253a1a13546c0
  • Pointer size: 131 Bytes
  • Size of remote file: 432 kB
assets/images/ref_seg.png ADDED

Git LFS Details

  • SHA256: b5f204c9ff02c4164b8accb4eabae630e13da8f90f1db2361904085eefcdee41
  • Pointer size: 133 Bytes
  • Size of remote file: 17.7 MB
assets/images/ref_seg_xyz.png ADDED

Git LFS Details

  • SHA256: 637bdfdeb1c2290dcd3dd60c52889a3015bcc8e610248c450ac64cc4204e1d3f
  • Pointer size: 132 Bytes
  • Size of remote file: 6.01 MB
assets/images/referring_video_visualize.png ADDED

Git LFS Details

  • SHA256: 0e0cadc69bae8a990f69ec50201a1a52e70018cd3c443f917a37388d2ef2e228
  • Pointer size: 132 Bytes
  • Size of remote file: 3.92 MB
assets/images/spatial_relation.png ADDED

Git LFS Details

  • SHA256: 499dcd1d9d1df9183032c3eddf979bf921809ba3549ff08569500ce964418ff3
  • Pointer size: 131 Bytes
  • Size of remote file: 810 kB
assets/images/teaser.png ADDED

Git LFS Details

  • SHA256: 8455f52b0b211b5f4c31d11346ceddfa65e710aec94bf2b5a13fcea13a30c8bd
  • Pointer size: 132 Bytes
  • Size of remote file: 5.86 MB
assets/images/teaser_new.png ADDED

Git LFS Details

  • SHA256: 2db02c337ddc6a22e453972d7c22f42f9400f3fd63c47011e5f9eb9f2ac399d4
  • Pointer size: 132 Bytes
  • Size of remote file: 4.37 MB
assets/images/text.png ADDED

Git LFS Details

  • SHA256: 169acc6556caeba7e4504e4199d2e960e5f104220100e24b91b65a92a6009bac
  • Pointer size: 133 Bytes
  • Size of remote file: 11.8 MB
assets/images/transformers_gh.png ADDED

Git LFS Details

  • SHA256: b04b0353a68873459970fac40479754acd9341c321493872c28b9e3fc04d00ba
  • Pointer size: 133 Bytes
  • Size of remote file: 24.7 MB
assets/images/trees_text.png ADDED

Git LFS Details

  • SHA256: 368053ce530754accd4a4ccf8cb46e40b908d784e587348097705baaa5462636
  • Pointer size: 132 Bytes
  • Size of remote file: 4.01 MB
assets/readmes/DATASET.md ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Preparing Dataset
2
+
3
+ :bangbang: The dataset preparation contains many details, welcome community contribution to fix any bug, Thanks!
4
+
5
+ Our dataloader follows [Detectron2](https://github.com/facebookresearch/detectron2) that contains: <br/>
6
+ (1) [A dataset registrator](datasets/registration) <br/>
7
+ (2) [A dataset mapper](datasets/dataset_mappers) <br/>
8
+ We modify the dataset registration and mapper for custom datasets.
9
+
10
+ ## Training Dataset
11
+ We assume all the datasets are stored under:
12
+ ```
13
+ .xdecoder_data
14
+ ```
15
+
16
+ ### COCO (SEEM & X-Decoder)
17
+
18
+ ```sh
19
+ # Prepare panoptic_train2017, panoptic_semseg_train2017 exactly the same as [Mask2Fomer](https://github.com/facebookresearch/Mask2Former/tree/main/datasets)
20
+
21
+ # (SEEM & X-Decoder) Download additional logistic and custom annotation files to .xdecoder_data/coco/annotations
22
+ wget https://huggingface.co/xdecoder/X-Decoder/resolve/main/caption_class_similarity.pth
23
+ wget https://huggingface.co/xdecoder/X-Decoder/resolve/main/captions_train2017_filtrefgumdval_filtvlp.json
24
+ wget https://huggingface.co/xdecoder/X-Decoder/resolve/main/grounding_train2017_filtrefgumdval_filtvlp.json
25
+ wget https://huggingface.co/xdecoder/X-Decoder/resolve/main/panoptic_train2017_filtrefgumdval_filtvlp.json
26
+ wget https://huggingface.co/xdecoder/X-Decoder/resolve/main/refcocog_umd_val.json
27
+ wget https://github.com/peteanderson80/coco-caption/blob/master/annotations/captions_val2014.json
28
+
29
+ # (SEEM) Download LVIS annotations for mask preparation
30
+ wget https://huggingface.co/xdecoder/SEEM/resolve/main/coco_train2017_filtrefgumdval_lvis.json
31
+ ```
32
+
33
+ After dataset preparation, the dataset structure would be:
34
+ ```
35
+ .xdecoder_data
36
+ └── coco/
37
+ ├── train2017/
38
+ ├── val2017/
39
+ ├── panoptic_train2017/
40
+ ├── panoptic_semseg_train2017/
41
+ ├── panoptic_val2017/
42
+ ├── panoptic_semseg_val2017/
43
+ └── annotations/
44
+ ├── refcocog_umd_val.json
45
+ ├── captions_val2014.json
46
+ ├── panoptic_val2017.json
47
+ ├── caption_class_similarity.pth
48
+ ├── panoptic_train2017_filtrefgumdval_filtvlp.json
49
+ └── grounding_train2017_filtrefgumdval_filtvlp.json
50
+ └── lvis/
51
+ └── coco_train2017_filtrefgumdval_lvis.json
52
+ ```
53
+
54
+ #### 4M Image Text Pairs (X-Decoder)
55
+ We follow the exact data preparation for the image text pairs data with [ViLT](https://github.com/dandelin/ViLT/blob/master/DATA.md).
56
+ ```
57
+ # The pretrained arrow file are put under .xdecoder_data/pretrain_arrows_code224 with the following list of files.
58
+ ["filtcoco2017val_caption_karpathy_train.arrow", "filtcoco2017val_caption_karpathy_val.arrow", "filtcoco2017val_caption_karpathy_restval.arrow"] + ["code224_vg.arrow"] + [f"code224_sbu_{i}.arrow" for i in range(9)] + [f"code224_conceptual_caption_train_{i}.arrow" for i in range(31)]
59
+ # ["filtcoco2017val_caption_karpathy_train.arrow", "filtcoco2017val_caption_karpathy_val.arrow", "filtcoco2017val_caption_karpathy_restval.arrow"] are originated from ["filtcoco2017val_caption_karpathy_train.arrow", "filtcoco2017val_caption_karpathy_val.arrow", "filtcoco2017val_caption_karpathy_restval.arrow"] with deletion of coco val2017 overlapped images to avoid information leakage.
60
+ ```
61
+
62
+ To get quick started:
63
+ ```sh
64
+ # Download coco karparthy test set (we hack the training data to be coco_caption_karpathy_test.arrow only for quick start in the codebase)
65
+ wget https://huggingface.co/xdecoder/X-Decoder/resolve/main/coco_caption_karpathy_test.arrow
66
+ ```
67
+
68
+ After dataset preparation, the dataset structure would be:
69
+ ```
70
+ .xdecoder_data
71
+ └── pretrain_arrows_code224/
72
+ ├── coco_caption_karpathy_test.arrow
73
+ ├── *filtcoco2017val_caption_karpathy_train.arrow
74
+ ├── ...
75
+ ├── *code224_vg.arrow
76
+ ├── *code224_sbu_0.arrow
77
+ ├── ...
78
+ ├── *code224_conceptual_caption_train_0.arrow
79
+ └── ...
80
+ * Those datasets are optional for debugging the pipeline. ! NEED to add back when you are training the model.
81
+ ```
82
+
83
+ ***NOTE:***
84
+
85
+ <img src="https://user-images.githubusercontent.com/11957155/226159078-7f817452-76f8-44f4-af7a-9f13f3e02554.png" width="500">
86
+ There are overlap between COCO2017, COCO-Karpathy and REF-COCO dataset, and ref-coco is all overlapped with the COCO2017 training data, we have exclude the refcocog-umd validation, coco-karpathy test split during training.
87
+
88
+ ## Evaluation Dataset
89
+
90
+ ### RefCOCO (SEEM & X-Decoder)
91
+ Please refer to COCO Preparation on [line](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once/blob/v1.0/assets/readmes/DATASET.md#coco-seem--x-decoder).
92
+
93
+ ### ADE20K, Cityscapes (X-Decoder)
94
+ Please Refer to [Mask2Former](https://github.com/facebookresearch/Mask2Former/tree/main/datasets).
95
+
96
+ ### BDD100K (X-Decoder)
97
+ Please download the 10k split of BDD100k at https://doc.bdd100k.com/download.html#id1
98
+
99
+ ### PascalVOC and all other interactive evaluation datasets (SEEM)
100
+ Please follow the instruction on [RITM](https://github.com/SamsungLabs/ritm_interactive_segmentation)
101
+
102
+ After dataset preparation, the dataset structure would be:
103
+ ```
104
+ .xdecoder_data
105
+ └── PascalVOC/
106
+ ├── Annotations/
107
+ ├── ImageSets
108
+ ├── JPEGImages/
109
+ ├── SegmentationClass/
110
+ └── SegmentationObject/
111
+ ```
112
+
assets/readmes/EVAL.md ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## X-Decoder
2
+
3
+ **Focal-T:**
4
+ ```
5
+ CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 mpirun -n 8 python entry.py evaluate \
6
+ --conf_files configs/xdecoder/focalt_unicl_lang.yaml \
7
+ --overrides \
8
+ COCO.INPUT.IMAGE_SIZE 1024 \
9
+ MODEL.DECODER.CAPTIONING.ENABLED True \
10
+ MODEL.DECODER.RETRIEVAL.ENABLED True \
11
+ MODEL.DECODER.GROUNDING.ENABLED True \
12
+ COCO.TEST.BATCH_SIZE_TOTAL 8 \
13
+ COCO.TRAIN.BATCH_SIZE_TOTAL 8 \
14
+ COCO.TRAIN.BATCH_SIZE_PER_GPU 1 \
15
+ VLP.TEST.BATCH_SIZE_TOTAL 8 \
16
+ VLP.TRAIN.BATCH_SIZE_TOTAL 8 \
17
+ VLP.TRAIN.BATCH_SIZE_PER_GPU 1 \
18
+ MODEL.DECODER.HIDDEN_DIM 512 \
19
+ MODEL.ENCODER.CONVS_DIM 512 \
20
+ MODEL.ENCODER.MASK_DIM 512 \
21
+ ADE20K.TEST.BATCH_SIZE_TOTAL 8 \
22
+ FP16 True \
23
+ WEIGHT True \
24
+ RESUME_FROM /pth/to/xdecoder_data/xdecoder/xdecoder_focalt_last.pt
25
+ ```
26
+
27
+ **Focal-L:**
28
+ ```
29
+ CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 mpirun -n 8 python entry.py evaluate \
30
+ --conf_files configs/xdecoder/focall_unicl_lang.yaml \
31
+ --overrides \
32
+ COCO.INPUT.IMAGE_SIZE 1024 \
33
+ MODEL.DECODER.CAPTIONING.ENABLED True \
34
+ MODEL.DECODER.RETRIEVAL.ENABLED True \
35
+ MODEL.DECODER.GROUNDING.ENABLED True \
36
+ COCO.TEST.BATCH_SIZE_TOTAL 8 \
37
+ COCO.TRAIN.BATCH_SIZE_TOTAL 8 \
38
+ COCO.TRAIN.BATCH_SIZE_PER_GPU 1 \
39
+ VLP.TEST.BATCH_SIZE_TOTAL 8 \
40
+ VLP.TRAIN.BATCH_SIZE_TOTAL 8 \
41
+ VLP.TRAIN.BATCH_SIZE_PER_GPU 1 \
42
+ MODEL.DECODER.HIDDEN_DIM 512 \
43
+ MODEL.ENCODER.CONVS_DIM 512 \
44
+ MODEL.ENCODER.MASK_DIM 512 \
45
+ ADE20K.TEST.BATCH_SIZE_TOTAL 8 \
46
+ FP16 True \
47
+ WEIGHT True \
48
+ RESUME_FROM /pth/to/xdecoder_data/xdecoder/xdecoder_focall_last.pt
49
+ ```
50
+
51
+ ## SEEM
52
+
53
+ **Focal-T v0:**
54
+ ```sh
55
+ CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 mpirun -n 8 python entry.py evaluate \
56
+ --conf_files configs/seem/focalt_unicl_lang_v0.yaml \
57
+ --overrides \
58
+ COCO.INPUT.IMAGE_SIZE 1024 \
59
+ MODEL.DECODER.HIDDEN_DIM 512 \
60
+ MODEL.ENCODER.CONVS_DIM 512 \
61
+ MODEL.ENCODER.MASK_DIM 512 \
62
+ VOC.TEST.BATCH_SIZE_TOTAL 8 \
63
+ TEST.BATCH_SIZE_TOTAL 8 \
64
+ REF.TEST.BATCH_SIZE_TOTAL 8 \
65
+ FP16 True \
66
+ WEIGHT True \
67
+ RESUME_FROM /pth/to/xdecoder_data/seem/seem_focalt_v0.pt
68
+ ```
69
+
70
+ **Focal-T v1:**
71
+ ```sh
72
+ CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 mpirun -n 8 python entry.py evaluate \
73
+ --conf_files configs/seem/focalt_unicl_lang_v1.yaml \
74
+ --overrides \
75
+ COCO.INPUT.IMAGE_SIZE 1024 \
76
+ MODEL.DECODER.HIDDEN_DIM 512 \
77
+ MODEL.ENCODER.CONVS_DIM 512 \
78
+ MODEL.ENCODER.MASK_DIM 512 \
79
+ VOC.TEST.BATCH_SIZE_TOTAL 8 \
80
+ TEST.BATCH_SIZE_TOTAL 8 \
81
+ REF.TEST.BATCH_SIZE_TOTAL 8 \
82
+ FP16 True \
83
+ WEIGHT True \
84
+ RESUME_FROM /pth/to/xdecoder_data/seem/seem_focalt_v1.pt
85
+ ```
86
+
87
+ **ViT-B SAM v1:**
88
+ ```sh
89
+ CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 mpirun -n 8 python entry.py evaluate \
90
+ --conf_files configs/seem/samvitb_unicl_lang_v1.yaml \
91
+ --overrides \
92
+ COCO.INPUT.IMAGE_SIZE 1024 \
93
+ MODEL.DECODER.HIDDEN_DIM 512 \
94
+ MODEL.ENCODER.CONVS_DIM 512 \
95
+ MODEL.ENCODER.MASK_DIM 512 \
96
+ VOC.TEST.BATCH_SIZE_TOTAL 8 \
97
+ TEST.BATCH_SIZE_TOTAL 8 \
98
+ REF.TEST.BATCH_SIZE_TOTAL 8 \
99
+ FP16 True \
100
+ WEIGHT True \
101
+ RESUME_FROM /pth/to/xdecoder_data/seem/seem_samvitb_v1.pt
102
+ ```
103
+
104
+ **ViT-L SAM v1:**
105
+ ```sh
106
+ CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 mpirun -n 8 python entry.py evaluate \
107
+ --conf_files configs/seem/samvitl_unicl_lang_v1.yaml \
108
+ --overrides \
109
+ COCO.INPUT.IMAGE_SIZE 1024 \
110
+ MODEL.DECODER.HIDDEN_DIM 512 \
111
+ MODEL.ENCODER.CONVS_DIM 512 \
112
+ MODEL.ENCODER.MASK_DIM 512 \
113
+ VOC.TEST.BATCH_SIZE_TOTAL 8 \
114
+ TEST.BATCH_SIZE_TOTAL 8 \
115
+ REF.TEST.BATCH_SIZE_TOTAL 8 \
116
+ FP16 True \
117
+ WEIGHT True \
118
+ RESUME_FROM /pth/to/xdecoder_data/seem/seem_samvitl_v1.pt
119
+ ```
120
+
121
+ **Focal-L v0:**
122
+ ```sh
123
+ CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 mpirun -n 8 python entry.py evaluate \
124
+ --conf_files configs/seem/focall_unicl_lang_v0.yaml \
125
+ --overrides \
126
+ COCO.INPUT.IMAGE_SIZE 1024 \
127
+ MODEL.DECODER.HIDDEN_DIM 512 \
128
+ MODEL.ENCODER.CONVS_DIM 512 \
129
+ MODEL.ENCODER.MASK_DIM 512 \
130
+ VOC.TEST.BATCH_SIZE_TOTAL 8 \
131
+ TEST.BATCH_SIZE_TOTAL 8 \
132
+ REF.TEST.BATCH_SIZE_TOTAL 8 \
133
+ FP16 True \
134
+ WEIGHT True \
135
+ RESUME_FROM /pth/to/xdecoder_data/seem/seem_focall_v0.pt
136
+ ```
assets/readmes/INSTALL.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Installation Guide
2
+
3
+ **General Environment**
4
+ * Linux System
5
+ * CUDA enabled GPU with Memory > 8GB (Evaluation)
6
+ * CUDA enabled GPU with Memory > 12GB (Training)
7
+
8
+ **Installation**
9
+
10
+ ```sh
11
+ # Python Package Installation
12
+ pip install -r assets/requirements/requirements.txt
13
+ pip install -r assets/requirements/requirements_custom.txt
14
+
15
+ # Customer Operator [only need training deformable vision encoder]
16
+ cd modeling/vision/encoder/ops && sh make.sh && cd ../../../../
17
+
18
+ # System Package [only need for demo in SEEM]
19
+ sudo apt update
20
+ sudo apt install ffmpeg
21
+ ```
22
+
23
+ **Dataset Preparation**
24
+
25
+ Please refer to [DATASET.md](assets/readmes/DATASET.md).
26
+
27
+ **Evaluation Tool**
28
+ ```sh
29
+ # save coco_caption.zip to .xdecoder_data
30
+ wget https://huggingface.co/xdecoder/X-Decoder/resolve/main/coco_caption.zip
31
+ unzip coco_caption.zip
32
+ ```
33
+
34
+ **Environment Variables**
35
+ ```sh
36
+ export DETECTRON2_DATASETS=/pth/to/xdecoder_data
37
+ export DATASET=/pth/to/xdecoder_data
38
+ export DATASET2=/pth/to/xdecoder_data
39
+ export VLDATASET=/pth/to/xdecoder_data
40
+ export PATH=$PATH:/pth/to/xdecoder_data/coco_caption/jre1.8.0_321/bin
41
+ export PYTHONPATH=$PYTHONPATH:/pth/to/xdecoder_data/coco_caption
42
+ ```
43
+
44
+ **Pretrained Checkpoint**
45
+
46
+ X-Decoder:
47
+ ```sh
48
+ # Focal-T UniCL
49
+ wget https://huggingface.co/xdecoder/X-Decoder/resolve/main/focalt_in21k_yfcc_gcc_xdecoder_unicl.pt
50
+
51
+ # Focal-L UniCL
52
+ wget https://huggingface.co/xdecoder/X-Decoder/resolve/main/focall_vision_focalb_lang_unicl.pt
53
+ ```
54
+
55
+ SEEM:
56
+ ```
57
+ # Focal-T X-Decoder
58
+ wget https://huggingface.co/xdecoder/X-Decoder/resolve/main/xdecoder_focalt_last.pt
59
+
60
+ # Focal-L X-Decoder
61
+ wget https://huggingface.co/xdecoder/X-Decoder/resolve/main/xdecoder_focall_last_oq101.pt
62
+
63
+ # Focal-B UniCL Language
64
+ wget https://huggingface.co/xdecoder/X-Decoder/resolve/main/focalb_lang_unicl.pt
65
+
66
+ # ViT-B SAM
67
+ wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth
68
+
69
+ # ViT-L SAM
70
+ wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth
71
+
72
+ ```
73
+
assets/readmes/TRAIN.md ADDED
@@ -0,0 +1,205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## X-Decoder
2
+
3
+ **Focal-T:**
4
+ ```bash
5
+ CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 mpirun -n 8 python entry.py train \
6
+ --conf_files configs/xdecoder/focalt_unicl_lang.yaml \
7
+ --overrides \
8
+ FP16 True \
9
+ COCO.INPUT.IMAGE_SIZE 1024 \
10
+ MODEL.DECODER.HIDDEN_DIM 512 \
11
+ MODEL.ENCODER.CONVS_DIM 512 \
12
+ MODEL.ENCODER.MASK_DIM 512 \
13
+ MODEL.DECODER.CAPTIONING.ENABLED True \
14
+ MODEL.DECODER.RETRIEVAL.ENABLED True \
15
+ MODEL.DECODER.GROUNDING.ENABLED True \
16
+ MODEL.DECODER.CAPTIONING_WEIGHT 8 \
17
+ MODEL.DECODER.RETRIEVAL_WEIGHT 8 \
18
+ MODEL.DECODER.TOP_CAPTIONING_LAYERS 3 \
19
+ MODEL.DECODER.TOP_RETRIEVAL_LAYERS 3 \
20
+ MODEL.DECODER.TOP_GROUNDING_LAYERS 6 \
21
+ MODEL.DECODER.GROUNDING.TEXT_WEIGHT 2.0 \
22
+ MODEL.DECODER.GROUNDING.CLASS_WEIGHT 0.5 \
23
+ COCO.TEST.BATCH_SIZE_TOTAL 8 \
24
+ COCO.TRAIN.BATCH_SIZE_TOTAL 8 \
25
+ COCO.TRAIN.BATCH_SIZE_PER_GPU 1 \
26
+ VLP.TEST.BATCH_SIZE_TOTAL 8 \
27
+ VLP.TRAIN.BATCH_SIZE_TOTAL 256 \
28
+ VLP.TRAIN.BATCH_SIZE_PER_GPU 32 \
29
+ VLP.DATALOADER.NUM_WORKERS 32
30
+ ADE20K.TEST.BATCH_SIZE_TOTAL 8 \
31
+ REF.TEST.BATCH_SIZE_TOTAL 8 \
32
+ SOLVER.LR_MULTIPLIER.lang_encoder 0.1 \
33
+ WEIGHT True \
34
+ RESUME_FROM /pth/to/xdecoder_data/pretrained/focalt_in21k_yfcc_gcc_xdecoder_unicl.pt
35
+ ```
36
+
37
+ **Focal-L:**
38
+ ```bash
39
+ CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 mpirun -n 8 python entry.py train \
40
+ --conf_files configs/xdecoder/focall_unicl_lang.yaml \
41
+ --overrides \
42
+ FP16 True \
43
+ COCO.INPUT.IMAGE_SIZE 1024 \
44
+ MODEL.DECODER.HIDDEN_DIM 512 \
45
+ MODEL.ENCODER.CONVS_DIM 512 \
46
+ MODEL.ENCODER.MASK_DIM 512 \
47
+ MODEL.DECODER.CAPTIONING.ENABLED True \
48
+ MODEL.DECODER.RETRIEVAL.ENABLED True \
49
+ MODEL.DECODER.GROUNDING.ENABLED True \
50
+ MODEL.DECODER.CAPTIONING_WEIGHT 8 \
51
+ MODEL.DECODER.RETRIEVAL_WEIGHT 8 \
52
+ MODEL.DECODER.TOP_CAPTIONING_LAYERS 3 \
53
+ MODEL.DECODER.TOP_RETRIEVAL_LAYERS 3 \
54
+ MODEL.DECODER.TOP_GROUNDING_LAYERS 6 \
55
+ MODEL.DECODER.GROUNDING.TEXT_WEIGHT 2.0 \
56
+ MODEL.DECODER.GROUNDING.CLASS_WEIGHT 0.5 \
57
+ COCO.TEST.BATCH_SIZE_TOTAL 8 \
58
+ COCO.TRAIN.BATCH_SIZE_TOTAL 8 \
59
+ COCO.TRAIN.BATCH_SIZE_PER_GPU 1 \
60
+ VLP.TEST.BATCH_SIZE_TOTAL 8 \
61
+ VLP.TRAIN.BATCH_SIZE_TOTAL 256 \
62
+ VLP.TRAIN.BATCH_SIZE_PER_GPU 32 \
63
+ VLP.DATALOADER.NUM_WORKERS 32
64
+ ADE20K.TEST.BATCH_SIZE_TOTAL 8 \
65
+ REF.TEST.BATCH_SIZE_TOTAL 8 \
66
+ SOLVER.LR_MULTIPLIER.lang_encoder 0.1 \
67
+ WEIGHT True \
68
+ RESUME_FROM /pth/to/xdecoder_data/pretrained/focall_vision_focalb_lang_unicl.pt
69
+ ```
70
+
71
+ ## SEEM
72
+
73
+ **Focal-T:**
74
+ ```bash
75
+ CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 mpirun -n 8 python entry.py train \
76
+ --conf_files configs/seem/focalt_unicl_lang_v1.yaml \
77
+ --overrides \
78
+ FP16 True \
79
+ COCO.INPUT.IMAGE_SIZE 1024 \
80
+ MODEL.DECODER.HIDDEN_DIM 512 \
81
+ MODEL.ENCODER.CONVS_DIM 512 \
82
+ MODEL.ENCODER.MASK_DIM 512 \
83
+ TEST.BATCH_SIZE_TOTAL 8 \
84
+ TRAIN.BATCH_SIZE_TOTAL 16 \
85
+ TRAIN.BATCH_SIZE_PER_GPU 2 \
86
+ SOLVER.MAX_NUM_EPOCHS 50 \
87
+ SOLVER.BASE_LR 0.0001 \
88
+ SOLVER.FIX_PARAM.backbone True \
89
+ SOLVER.FIX_PARAM.lang_encoder True \
90
+ SOLVER.FIX_PARAM.pixel_decoder True \
91
+ MODEL.DECODER.COST_SPATIAL.CLASS_WEIGHT 5.0 \
92
+ MODEL.DECODER.COST_SPATIAL.MASK_WEIGHT 2.0 \
93
+ MODEL.DECODER.COST_SPATIAL.DICE_WEIGHT 2.0 \
94
+ MODEL.DECODER.TOP_SPATIAL_LAYERS 10 \
95
+ MODEL.DECODER.SPATIAL.ENABLED True \
96
+ MODEL.DECODER.GROUNDING.ENABLED True \
97
+ FIND_UNUSED_PARAMETERS True \
98
+ ATTENTION_ARCH.SPATIAL_MEMORIES 32 \
99
+ MODEL.DECODER.SPATIAL.MAX_ITER 5 \
100
+ ATTENTION_ARCH.QUERY_NUMBER 3 \
101
+ STROKE_SAMPLER.MAX_CANDIDATE 10 \
102
+ WEIGHT True \
103
+ RESUME_FROM /pth/to/xdecoder_data/pretrained/xdecoder_focalt_last.pt
104
+ ```
105
+
106
+ **Focal-L:**
107
+ ```bash
108
+ CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 mpirun -n 8 python entry.py train \
109
+ --conf_files configs/seem/focall_unicl_lang_v1.yaml \
110
+ --overrides \
111
+ FP16 True \
112
+ COCO.INPUT.IMAGE_SIZE 1024 \
113
+ MODEL.DECODER.HIDDEN_DIM 512 \
114
+ MODEL.ENCODER.CONVS_DIM 512 \
115
+ MODEL.ENCODER.MASK_DIM 512 \
116
+ TEST.BATCH_SIZE_TOTAL 8 \
117
+ TRAIN.BATCH_SIZE_TOTAL 16 \
118
+ TRAIN.BATCH_SIZE_PER_GPU 2 \
119
+ SOLVER.MAX_NUM_EPOCHS 50 \
120
+ SOLVER.BASE_LR 0.0001 \
121
+ SOLVER.FIX_PARAM.backbone True \
122
+ SOLVER.FIX_PARAM.lang_encoder True \
123
+ SOLVER.FIX_PARAM.pixel_decoder True \
124
+ MODEL.DECODER.COST_SPATIAL.CLASS_WEIGHT 5.0 \
125
+ MODEL.DECODER.COST_SPATIAL.MASK_WEIGHT 2.0 \
126
+ MODEL.DECODER.COST_SPATIAL.DICE_WEIGHT 2.0 \
127
+ MODEL.DECODER.TOP_SPATIAL_LAYERS 10 \
128
+ MODEL.DECODER.SPATIAL.ENABLED True \
129
+ MODEL.DECODER.GROUNDING.ENABLED True \
130
+ FIND_UNUSED_PARAMETERS True \
131
+ ATTENTION_ARCH.SPATIAL_MEMORIES 32 \
132
+ MODEL.DECODER.SPATIAL.MAX_ITER 5 \
133
+ ATTENTION_ARCH.QUERY_NUMBER 3 \
134
+ STROKE_SAMPLER.MAX_CANDIDATE 10 \
135
+ WEIGHT True \
136
+ RESUME_FROM /pth/to/xdecoder_data/pretrained/xdecoder_focall_last_oq101.pt
137
+ ```
138
+
139
+ **SAM ViT-B:**
140
+ ```bash
141
+ CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 mpirun -n 8 python entry.py train \
142
+ --conf_files configs/seem/samvitb_unicl_lang_v1.yaml \
143
+ --overrides \
144
+ FP16 True \
145
+ COCO.INPUT.IMAGE_SIZE 1024 \
146
+ MODEL.DECODER.HIDDEN_DIM 512 \
147
+ MODEL.ENCODER.CONVS_DIM 512 \
148
+ MODEL.ENCODER.MASK_DIM 512 \
149
+ TEST.BATCH_SIZE_TOTAL 8 \
150
+ TRAIN.BATCH_SIZE_TOTAL 16 \
151
+ TRAIN.BATCH_SIZE_PER_GPU 2 \
152
+ SOLVER.MAX_NUM_EPOCHS 50 \
153
+ SOLVER.BASE_LR 0.0001 \
154
+ SOLVER.FIX_PARAM.backbone True \
155
+ SOLVER.FIX_PARAM.lang_encoder True \
156
+ SOLVER.FIX_PARAM.pixel_decoder True \
157
+ MODEL.DECODER.COST_SPATIAL.CLASS_WEIGHT 5.0 \
158
+ MODEL.DECODER.COST_SPATIAL.MASK_WEIGHT 2.0 \
159
+ MODEL.DECODER.COST_SPATIAL.DICE_WEIGHT 2.0 \
160
+ MODEL.DECODER.TOP_SPATIAL_LAYERS 10 \
161
+ MODEL.DECODER.SPATIAL.ENABLED True \
162
+ MODEL.DECODER.GROUNDING.ENABLED True \
163
+ FIND_UNUSED_PARAMETERS True \
164
+ ATTENTION_ARCH.SPATIAL_MEMORIES 32 \
165
+ MODEL.DECODER.SPATIAL.MAX_ITER 5 \
166
+ ATTENTION_ARCH.QUERY_NUMBER 3 \
167
+ STROKE_SAMPLER.MAX_CANDIDATE 10 \
168
+ MODEL.BACKBONE.PRETRAINED /pth/to/xdecoder_data/pretrained/sam_vit_b_01ec64.pth \
169
+ WEIGHT True \
170
+ RESUME_FROM /pth/to/xdecoder_data/pretrained/focalb_lang_unicl.pt
171
+ ```
172
+
173
+ **SAM ViT-L:**
174
+ ```bash
175
+ CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 mpirun -n 8 python entry.py train \
176
+ --conf_files configs/seem/samvitl_unicl_lang_v1.yaml \
177
+ --overrides \
178
+ FP16 True \
179
+ COCO.INPUT.IMAGE_SIZE 1024 \
180
+ MODEL.DECODER.HIDDEN_DIM 512 \
181
+ MODEL.ENCODER.CONVS_DIM 512 \
182
+ MODEL.ENCODER.MASK_DIM 512 \
183
+ TEST.BATCH_SIZE_TOTAL 8 \
184
+ TRAIN.BATCH_SIZE_TOTAL 16 \
185
+ TRAIN.BATCH_SIZE_PER_GPU 2 \
186
+ SOLVER.MAX_NUM_EPOCHS 50 \
187
+ SOLVER.BASE_LR 0.0001 \
188
+ SOLVER.FIX_PARAM.backbone True \
189
+ SOLVER.FIX_PARAM.lang_encoder True \
190
+ SOLVER.FIX_PARAM.pixel_decoder True \
191
+ MODEL.DECODER.COST_SPATIAL.CLASS_WEIGHT 5.0 \
192
+ MODEL.DECODER.COST_SPATIAL.MASK_WEIGHT 2.0 \
193
+ MODEL.DECODER.COST_SPATIAL.DICE_WEIGHT 2.0 \
194
+ MODEL.DECODER.TOP_SPATIAL_LAYERS 10 \
195
+ MODEL.DECODER.SPATIAL.ENABLED True \
196
+ MODEL.DECODER.GROUNDING.ENABLED True \
197
+ FIND_UNUSED_PARAMETERS True \
198
+ ATTENTION_ARCH.SPATIAL_MEMORIES 32 \
199
+ MODEL.DECODER.SPATIAL.MAX_ITER 5 \
200
+ ATTENTION_ARCH.QUERY_NUMBER 3 \
201
+ STROKE_SAMPLER.MAX_CANDIDATE 10 \
202
+ MODEL.BACKBONE.PRETRAINED /pth/to/xdecoder_data/pretrained/sam_vit_l_0b3195.pth \
203
+ WEIGHT True \
204
+ RESUME_FROM /pth/to/xdecoder_data/pretrained/focalb_lang_unicl.pt
205
+ ```
assets/requirements/requirements.txt ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ torch==2.1.0
2
+ torchvision==0.16.0
3
+ pillow==9.4.0
4
+ opencv-python==4.8.1.78
5
+ pyyaml==6.0.1
6
+ json_tricks==3.17.3
7
+ yacs==0.1.8
8
+ scikit-learn==1.3.1
9
+ pandas==2.0.3
10
+ timm==0.4.12
11
+ numpy==1.23.1
12
+ einops==0.7.0
13
+ fvcore==0.1.5.post20221221
14
+ transformers==4.34.0
15
+ sentencepiece==0.1.99
16
+ ftfy==6.1.1
17
+ regex==2023.10.3
18
+ nltk==3.8.1
19
+ mpi4py==3.1.5
20
+ vision-datasets==0.2.2
21
+ cython==3.0.2
22
+ pycocotools==2.0.7
23
+ diffdist==0.1
24
+ pyarrow==13.0.0
25
+ cityscapesscripts==2.2.2
26
+ shapely==1.8.0
27
+ scikit-image==0.21.0
28
+ mup==1.0.0
29
+ accelerate==0.23.0
30
+ kornia==0.7.0
31
+ deepspeed==0.10.3
32
+ wandb==0.15.12
33
+ infinibatch==0.1.1
34
+ gradio==3.42.0
assets/requirements/requirements_custom.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ git+https://github.com/arogozhnikov/einops.git
2
+ git+https://github.com/MaureenZOU/detectron2-xyz.git
3
+ git+https://github.com/openai/whisper.git
assets/scripts/run_demo.sh ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ sudo apt update
2
+ sudo apt install ffmpeg
3
+ pip install -r assets/requirements/requirements.txt
4
+ pip install -r assets/requirements/requirements_custom.txt
5
+ python demo/seem/app.py
configs/.DS_Store ADDED
Binary file (6.15 kB). View file
 
configs/seem/davitd3_unicl_lang_v1.yaml ADDED
@@ -0,0 +1,396 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # X-Decoder -- Generalized Decoding for Pixel, Image, and Language
3
+ # Copyright (c) 2022 Microsoft
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # Written by Xueyan Zou ([email protected])
6
+ # --------------------------------------------------------
7
+
8
+ # Define Test/Trainer/Saving
9
+ PIPELINE: XDecoderPipeline
10
+ TRAINER: xdecoder
11
+ SAVE_DIR: '../../data/output/test'
12
+ base_path: "./"
13
+
14
+ # Resume Logistic
15
+ RESUME: false
16
+ WEIGHT: false
17
+ RESUME_FROM: ''
18
+ EVAL_AT_START: False
19
+
20
+ # Logging and Debug
21
+ WANDB: False
22
+ LOG_EVERY: 100
23
+ FIND_UNUSED_PARAMETERS: false
24
+
25
+ # Speed up training
26
+ FP16: false
27
+ PORT: '36873'
28
+
29
+ # misc
30
+ LOADER:
31
+ JOINT: False
32
+ KEY_DATASET: 'coco'
33
+
34
+ ##################
35
+ # Task settings
36
+ ##################
37
+ VERBOSE: true
38
+ MODEL:
39
+ NAME: seem_model_v1
40
+ HEAD: xdecoder_head
41
+ MASK_ON: false
42
+ KEYPOINT_ON: false
43
+ LOAD_PROPOSALS: false
44
+ DIM_PROJ: 512
45
+ TEXT:
46
+ ARCH: vlpencoder
47
+ NAME: transformer
48
+ TOKENIZER: clip
49
+ CONTEXT_LENGTH: 77 # 77
50
+ WIDTH: 512
51
+ HEADS: 8
52
+ LAYERS: 12 # 6
53
+ AUTOGRESSIVE: True
54
+ BACKBONE:
55
+ NAME: davit
56
+ PRETRAINED: ''
57
+ LOAD_PRETRAINED: false
58
+ PRETRAINED_LAYERS: '*'
59
+ DAVIT:
60
+ DROP_PATH_RATE: 0.3
61
+ PATCH_SIZE: [7, 2, 2, 2]
62
+ PATCH_STRIDE: [4, 2, 2, 2]
63
+ PATCH_PADDING: [3, 0, 0, 0]
64
+ PATCH_PRENORM: [false, true, true, true]
65
+ DIM_EMBED: [128, 256, 512, 1024]
66
+ NUM_HEADS: [4, 8, 16, 32]
67
+ NUM_GROUPS: [4, 8, 16, 32]
68
+ DEPTHS: [1, 1, 9, 1]
69
+ OUT_FEATURES: ["res2", "res3", "res4", "res5"]
70
+ OUT_INDICES: [0, 1, 2, 3]
71
+ ENABLE_CHECKPOINT: False
72
+ ENCODER:
73
+ NAME: transformer_encoder_fpn
74
+ IGNORE_VALUE: 255
75
+ NUM_CLASSES: 133
76
+ LOSS_WEIGHT: 1.0
77
+ CONVS_DIM: 512
78
+ MASK_DIM: 512
79
+ NORM: "GN"
80
+ IN_FEATURES: ["res2", "res3", "res4", "res5"]
81
+ DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES: ["res3", "res4", "res5"]
82
+ COMMON_STRIDE: 4
83
+ TRANSFORMER_ENC_LAYERS: 6
84
+ DECODER:
85
+ NAME: seem_v1
86
+ TRANSFORMER_IN_FEATURE: "multi_scale_pixel_decoder"
87
+ MASK:
88
+ ENABLED: True
89
+ DETECTION: False
90
+ SPATIAL:
91
+ ENABLED: True
92
+ MAX_ITER: 1
93
+ GROUNDING:
94
+ ENABLED: True
95
+ MAX_LEN: 5
96
+ TEXT_WEIGHT: 2.0
97
+ CLASS_WEIGHT: 0.5
98
+ RETRIEVAL:
99
+ ENABLED: False
100
+ LVIS:
101
+ ENABLED: True
102
+ THRES: 0.7
103
+ OPENIMAGE:
104
+ ENABLED: False
105
+ NEGATIVE_SAMPLES: 5
106
+ GROUNDING:
107
+ ENABLED: False
108
+ MAX_LEN: 5
109
+ CAPTION:
110
+ ENABLED: False
111
+ PHRASE_PROB: 0.5
112
+ SIM_THRES: 0.95
113
+ DEEP_SUPERVISION: True
114
+ NO_OBJECT_WEIGHT: 0.1
115
+ GCLASS_WEIGHT: 0.4
116
+ GMASK_WEIGHT: 1.0
117
+ GDICE_WEIGHT: 1.0
118
+ SCLASS_WEIGHT: 0.4
119
+ SMASK_WEIGHT: 1.0
120
+ SDICE_WEIGHT: 1.0
121
+ OCLASS_WEIGHT: 0.4
122
+ OMASK_WEIGHT: 1.0
123
+ ODICE_WEIGHT: 1.0
124
+ CLASS_WEIGHT: 2.0
125
+ MASK_WEIGHT: 5.0
126
+ DICE_WEIGHT: 5.0
127
+ BBOX_WEIGHT: 5.0
128
+ GIOU_WEIGHT: 2.0
129
+ CAPTION_WEIGHT: 2.0
130
+ COST_SPATIAL:
131
+ CLASS_WEIGHT: 5.0
132
+ MASK_WEIGHT: 2.0
133
+ DICE_WEIGHT: 2.0
134
+ HIDDEN_DIM: 512
135
+ NUM_OBJECT_QUERIES: 101
136
+ NHEADS: 8
137
+ DROPOUT: 0.0
138
+ DIM_FEEDFORWARD: 2048
139
+ MAX_SPATIAL_LEN: [512, 512, 512, 512]
140
+ # ENC_LAYERS: 0
141
+ PRE_NORM: False
142
+ ENFORCE_INPUT_PROJ: False
143
+ SIZE_DIVISIBILITY: 32
144
+ TRAIN_NUM_POINTS: 12544
145
+ OVERSAMPLE_RATIO: 3.0
146
+ IMPORTANCE_SAMPLE_RATIO: 0.75
147
+ DEC_LAYERS: 10 # 9 decoder layers, add one for the loss on learnable query
148
+ TOP_GROUNDING_LAYERS: 10
149
+ TOP_CAPTION_LAYERS: 10
150
+ TOP_SPATIAL_LAYERS: 10
151
+ TOP_OPENIMAGE_LAYERS: 10
152
+ TEST:
153
+ SEMANTIC_ON: True
154
+ INSTANCE_ON: True
155
+ PANOPTIC_ON: True
156
+ OVERLAP_THRESHOLD: 0.8
157
+ OBJECT_MASK_THRESHOLD: 0.8
158
+ SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE: false
159
+
160
+ # Spatial sampler
161
+ STROKE_SAMPLER:
162
+ MAX_CANDIDATE: 1
163
+ CANDIDATE_PROBS: [0.25, 0.25, 0.25, 0.25] # for training only
164
+ CANDIDATE_NAMES: ["Point", "Polygon", "Scribble", "Circle"]
165
+ DILATION: 3
166
+ CIRCLE:
167
+ NUM_STROKES: 5
168
+ STROKE_PRESET: ['object_like', 'object_like_middle', 'object_like_small']
169
+ STROKE_PROB: [0.33, 0.33, 0.33]
170
+ SCRIBBLE:
171
+ NUM_STROKES: 5
172
+ STROKE_PRESET: ['rand_curve', 'rand_curve_small']
173
+ STROKE_PROB: [0.5, 0.5]
174
+ POINT:
175
+ NUM_POINTS: 20
176
+ POLYGON:
177
+ MAX_POINTS: 9
178
+ EVAL:
179
+ MODE: 'best' # best/random/best_random
180
+ NEGATIVE: False
181
+ MAX_ITER: 20
182
+ IOU_ITER: 1
183
+ GROUNDING: False
184
+
185
+ # Multi-modal Architecture, order matters
186
+ ATTENTION_ARCH:
187
+ VARIABLE:
188
+ queries: ['object', 'grounding', 'spatial']
189
+ tokens: ['grounding', 'spatial']
190
+ memories: ['spatial']
191
+ SELF_ATTENTION:
192
+ queries:
193
+ object: ['queries_object']
194
+ grounding: ['queries_grounding', 'tokens_grounding']
195
+ spatial: ['queries_spatial', 'tokens_spatial', 'memories_spatial']
196
+ tokens:
197
+ grounding: ['queries_grounding', 'tokens_grounding']
198
+ spatial: ['tokens_spatial']
199
+ memories:
200
+ spatial: ['memories_spatial']
201
+ CROSS_ATTENTION:
202
+ queries:
203
+ object: True
204
+ grounding: True
205
+ spatial: True
206
+ memories:
207
+ spatial: True
208
+ tokens:
209
+ grounding: False
210
+ spatial: False
211
+ MASKING: ['tokens_spatial', 'tokens_grounding']
212
+ DUPLICATION:
213
+ queries:
214
+ grounding: 'queries_object'
215
+ spatial: 'queries_object'
216
+ SPATIAL_MEMORIES: 32
217
+ QUERY_NUMBER: 3
218
+
219
+ DATASETS:
220
+ TRAIN: ["coco_2017_train_panoptic_filtrefgumdval_with_sem_seg_caption_grounding_lvis",]
221
+ # TRAIN: ["coco_2017_train_panoptic_with_sem_seg_caption_grounding",]
222
+ TEST: ["coco_2017_val_panoptic_with_sem_seg", "pascalvoc_val_Point", "refcocog_val_umd"] # to evaluate instance and semantic performance as well
223
+ # TEST: ["pascalvoc_val_Point"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
224
+ # TEST: ["cocomini_val_Point", "cocomini_val_Circle", "cocomini_val_Scribble", "cocomini_val_Polygon", "cocomini_val_Box"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
225
+ # TEST: ["ade600_val_Point", "ade600_val_Circle", "ade600_val_Scribble", "ade600_val_Polygon", "ade600_val_Box"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
226
+ # TEST: ["openimage600_val_Point", "openimage600_val_Circle", "openimage600_val_Scribble", "openimage600_val_Polygon", "openimage600_val_Box"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
227
+ CLASS_CONCAT: false
228
+ SIZE_DIVISIBILITY: 32
229
+ PROPOSAL_FILES_TRAIN: []
230
+
231
+ INPUT:
232
+ PIXEL_MEAN: [123.675, 116.280, 103.530]
233
+ PIXEL_STD: [58.395, 57.120, 57.375]
234
+
235
+ TRAIN:
236
+ ASPECT_RATIO_GROUPING: true
237
+ BATCH_SIZE_TOTAL: 4
238
+ BATCH_SIZE_PER_GPU: 4
239
+ SHUFFLE: true
240
+
241
+ TEST:
242
+ DETECTIONS_PER_IMAGE: 100
243
+ NAME: coco_eval
244
+ IOU_TYPE: ['bbox', 'segm']
245
+ USE_MULTISCALE: false
246
+ BATCH_SIZE_TOTAL: 8
247
+ MODEL_FILE: ''
248
+ AUG:
249
+ ENABLED: False
250
+
251
+ DATALOADER:
252
+ FILTER_EMPTY_ANNOTATIONS: False
253
+ NUM_WORKERS: 8
254
+ LOAD_PROPOSALS: False
255
+ SAMPLER_TRAIN: "TrainingSampler"
256
+ ASPECT_RATIO_GROUPING: True
257
+
258
+ COCO:
259
+ INPUT:
260
+ MIN_SIZE_TRAIN: 800
261
+ MAX_SIZE_TRAIN: 1333
262
+ MIN_SIZE_TRAIN_SAMPLING: 'choice'
263
+ MIN_SIZE_TEST: 800
264
+ MAX_SIZE_TEST: 1333
265
+ IMAGE_SIZE: 1024
266
+ MIN_SCALE: 0.1
267
+ MAX_SCALE: 2.0
268
+ DATASET_MAPPER_NAME: "coco_interactive"
269
+ IGNORE_VALUE: 255
270
+ COLOR_AUG_SSD: False
271
+ SIZE_DIVISIBILITY: 32
272
+ RANDOM_FLIP: "horizontal"
273
+ MASK_FORMAT: "polygon"
274
+ FORMAT: "RGB"
275
+ CROP:
276
+ ENABLED: True
277
+ DATASET:
278
+ DATASET: 'coco'
279
+
280
+ # Validation dataset
281
+ ADE20K:
282
+ INPUT:
283
+ MIN_SIZE_TRAIN: 640
284
+ MIN_SIZE_TRAIN_SAMPLING: "choice"
285
+ MIN_SIZE_TEST: 640
286
+ MAX_SIZE_TRAIN: 2560
287
+ MAX_SIZE_TEST: 2560
288
+ MASK_FORMAT: "polygon"
289
+ CROP:
290
+ ENABLED: True
291
+ TYPE: "absolute"
292
+ SIZE: (640, 640)
293
+ SINGLE_CATEGORY_MAX_AREA: 1.0
294
+ COLOR_AUG_SSD: True
295
+ SIZE_DIVISIBILITY: 640 # used in dataset mapper
296
+ DATASET_MAPPER_NAME: "mask_former_panoptic"
297
+ FORMAT: "RGB"
298
+ DATASET:
299
+ DATASET: 'ade'
300
+
301
+ SBD:
302
+ INPUT:
303
+ MIN_SIZE_TEST: 800
304
+ MAX_SIZE_TEST: 1333
305
+ DATALOADER:
306
+ FILTER_EMPTY_ANNOTATIONS: False
307
+ NUM_WORKERS: 0
308
+ LOAD_PROPOSALS: False
309
+ SAMPLER_TRAIN: "TrainingSampler"
310
+ ASPECT_RATIO_GROUPING: False
311
+ TEST:
312
+ BATCH_SIZE_TOTAL: 1
313
+
314
+ VOC:
315
+ INPUT:
316
+ MIN_SIZE_TEST: 800
317
+ MAX_SIZE_TEST: 1333
318
+ DATALOADER:
319
+ FILTER_EMPTY_ANNOTATIONS: False
320
+ NUM_WORKERS: 0
321
+ LOAD_PROPOSALS: False
322
+ SAMPLER_TRAIN: "TrainingSampler"
323
+ ASPECT_RATIO_GROUPING: False
324
+ TEST:
325
+ BATCH_SIZE_TOTAL: 8
326
+
327
+ DAVIS:
328
+ INPUT:
329
+ MIN_SIZE_TEST: 800
330
+ MAX_SIZE_TEST: 1333
331
+ DATALOADER:
332
+ FILTER_EMPTY_ANNOTATIONS: False
333
+ NUM_WORKERS: 0
334
+ LOAD_PROPOSALS: False
335
+ SAMPLER_TRAIN: "TrainingSampler"
336
+ ASPECT_RATIO_GROUPING: False
337
+ TEST:
338
+ BATCH_SIZE_TOTAL: 8
339
+
340
+ VOS:
341
+ INPUT:
342
+ MIN_SIZE_TEST: 800
343
+ MAX_SIZE_TEST: 1333
344
+ DATALOADER:
345
+ FILTER_EMPTY_ANNOTATIONS: False
346
+ NUM_WORKERS: 0
347
+ LOAD_PROPOSALS: False
348
+ SAMPLER_TRAIN: "TrainingSampler"
349
+ ASPECT_RATIO_GROUPING: False
350
+ TEST:
351
+ BATCH_SIZE_TOTAL: 1
352
+
353
+ REF:
354
+ INPUT:
355
+ PIXEL_MEAN: [123.675, 116.280, 103.530]
356
+ PIXEL_STD: [58.395, 57.120, 57.375]
357
+ MIN_SIZE_TEST: 512
358
+ MAX_SIZE_TEST: 1024
359
+ FORMAT: "RGB"
360
+ SPATIAL: False
361
+ DATALOADER:
362
+ FILTER_EMPTY_ANNOTATIONS: False
363
+ NUM_WORKERS: 4
364
+ LOAD_PROPOSALS: False
365
+ SAMPLER_TRAIN: "TrainingSampler"
366
+ ASPECT_RATIO_GROUPING: False
367
+ TEST:
368
+ BATCH_SIZE_TOTAL: 8
369
+
370
+ # Detectron2 training config for optimizer and lr scheduler
371
+ SOLVER:
372
+ BASE_LR: 0.0001
373
+ STEPS: [0.88889, 0.96296]
374
+ MAX_ITER: 1
375
+ GAMMA: 0.1
376
+ WARMUP_FACTOR: 1.0
377
+ WARMUP_ITERS: 10
378
+ WARMUP_METHOD: "linear"
379
+ WEIGHT_DECAY: 0.05
380
+ OPTIMIZER: "ADAMW"
381
+ LR_SCHEDULER_NAME: "WarmupMultiStepLR"
382
+ LR_MULTIPLIER:
383
+ backbone: 0.1
384
+ lang_encoder: 0.1
385
+ FIX_PARAM:
386
+ backbone: True
387
+ lang_encoder: True
388
+ pixel_decoder: True
389
+ WEIGHT_DECAY_NORM: 0.0
390
+ WEIGHT_DECAY_EMBED: 0.0
391
+ CLIP_GRADIENTS:
392
+ ENABLED: True
393
+ CLIP_TYPE: "full_model"
394
+ CLIP_VALUE: 5.0 # 0.01
395
+ NORM_TYPE: 2.0
396
+ MAX_NUM_EPOCHS: 50
configs/seem/davitd5_unicl_lang_v1.yaml ADDED
@@ -0,0 +1,396 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # X-Decoder -- Generalized Decoding for Pixel, Image, and Language
3
+ # Copyright (c) 2022 Microsoft
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # Written by Xueyan Zou ([email protected])
6
+ # --------------------------------------------------------
7
+
8
+ # Define Test/Trainer/Saving
9
+ PIPELINE: XDecoderPipeline
10
+ TRAINER: xdecoder
11
+ SAVE_DIR: '../../data/output/test'
12
+ base_path: "./"
13
+
14
+ # Resume Logistic
15
+ RESUME: false
16
+ WEIGHT: false
17
+ RESUME_FROM: ''
18
+ EVAL_AT_START: False
19
+
20
+ # Logging and Debug
21
+ WANDB: False
22
+ LOG_EVERY: 100
23
+ FIND_UNUSED_PARAMETERS: false
24
+
25
+ # Speed up training
26
+ FP16: false
27
+ PORT: '36873'
28
+
29
+ # misc
30
+ LOADER:
31
+ JOINT: False
32
+ KEY_DATASET: 'coco'
33
+
34
+ ##################
35
+ # Task settings
36
+ ##################
37
+ VERBOSE: true
38
+ MODEL:
39
+ NAME: seem_model_v1
40
+ HEAD: xdecoder_head
41
+ MASK_ON: false
42
+ KEYPOINT_ON: false
43
+ LOAD_PROPOSALS: false
44
+ DIM_PROJ: 512
45
+ TEXT:
46
+ ARCH: vlpencoder
47
+ NAME: transformer
48
+ TOKENIZER: clip
49
+ CONTEXT_LENGTH: 77 # 77
50
+ WIDTH: 512
51
+ HEADS: 8
52
+ LAYERS: 12 # 6
53
+ AUTOGRESSIVE: True
54
+ BACKBONE:
55
+ NAME: davit
56
+ PRETRAINED: ''
57
+ LOAD_PRETRAINED: false
58
+ PRETRAINED_LAYERS: '*'
59
+ DAVIT:
60
+ DROP_PATH_RATE: 0.3
61
+ PATCH_SIZE: [7, 3, 3, 3]
62
+ PATCH_STRIDE: [4, 2, 2, 2]
63
+ PATCH_PADDING: [3, 1, 1, 1]
64
+ PATCH_PRENORM: [false, true, true, true]
65
+ DIM_EMBED: [256, 512, 1024, 2048]
66
+ NUM_HEADS: [8, 16, 32, 64]
67
+ NUM_GROUPS: [8, 16, 32, 64]
68
+ DEPTHS: [1, 1, 9, 1]
69
+ OUT_FEATURES: ["res2", "res3", "res4", "res5"]
70
+ OUT_INDICES: [0, 1, 2, 3]
71
+ ENABLE_CHECKPOINT: False
72
+ ENCODER:
73
+ NAME: transformer_encoder_fpn
74
+ IGNORE_VALUE: 255
75
+ NUM_CLASSES: 133
76
+ LOSS_WEIGHT: 1.0
77
+ CONVS_DIM: 512
78
+ MASK_DIM: 512
79
+ NORM: "GN"
80
+ IN_FEATURES: ["res2", "res3", "res4", "res5"]
81
+ DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES: ["res3", "res4", "res5"]
82
+ COMMON_STRIDE: 4
83
+ TRANSFORMER_ENC_LAYERS: 6
84
+ DECODER:
85
+ NAME: seem_v1
86
+ TRANSFORMER_IN_FEATURE: "multi_scale_pixel_decoder"
87
+ MASK:
88
+ ENABLED: True
89
+ DETECTION: False
90
+ SPATIAL:
91
+ ENABLED: True
92
+ MAX_ITER: 1
93
+ GROUNDING:
94
+ ENABLED: True
95
+ MAX_LEN: 5
96
+ TEXT_WEIGHT: 2.0
97
+ CLASS_WEIGHT: 0.5
98
+ RETRIEVAL:
99
+ ENABLED: False
100
+ LVIS:
101
+ ENABLED: True
102
+ THRES: 0.7
103
+ OPENIMAGE:
104
+ ENABLED: False
105
+ NEGATIVE_SAMPLES: 5
106
+ GROUNDING:
107
+ ENABLED: False
108
+ MAX_LEN: 5
109
+ CAPTION:
110
+ ENABLED: False
111
+ PHRASE_PROB: 0.5
112
+ SIM_THRES: 0.95
113
+ DEEP_SUPERVISION: True
114
+ NO_OBJECT_WEIGHT: 0.1
115
+ GCLASS_WEIGHT: 0.4
116
+ GMASK_WEIGHT: 1.0
117
+ GDICE_WEIGHT: 1.0
118
+ SCLASS_WEIGHT: 0.4
119
+ SMASK_WEIGHT: 1.0
120
+ SDICE_WEIGHT: 1.0
121
+ OCLASS_WEIGHT: 0.4
122
+ OMASK_WEIGHT: 1.0
123
+ ODICE_WEIGHT: 1.0
124
+ CLASS_WEIGHT: 2.0
125
+ MASK_WEIGHT: 5.0
126
+ DICE_WEIGHT: 5.0
127
+ BBOX_WEIGHT: 5.0
128
+ GIOU_WEIGHT: 2.0
129
+ CAPTION_WEIGHT: 2.0
130
+ COST_SPATIAL:
131
+ CLASS_WEIGHT: 5.0
132
+ MASK_WEIGHT: 2.0
133
+ DICE_WEIGHT: 2.0
134
+ HIDDEN_DIM: 512
135
+ NUM_OBJECT_QUERIES: 101
136
+ NHEADS: 8
137
+ DROPOUT: 0.0
138
+ DIM_FEEDFORWARD: 2048
139
+ MAX_SPATIAL_LEN: [512, 512, 512, 512]
140
+ # ENC_LAYERS: 0
141
+ PRE_NORM: False
142
+ ENFORCE_INPUT_PROJ: False
143
+ SIZE_DIVISIBILITY: 32
144
+ TRAIN_NUM_POINTS: 12544
145
+ OVERSAMPLE_RATIO: 3.0
146
+ IMPORTANCE_SAMPLE_RATIO: 0.75
147
+ DEC_LAYERS: 10 # 9 decoder layers, add one for the loss on learnable query
148
+ TOP_GROUNDING_LAYERS: 10
149
+ TOP_CAPTION_LAYERS: 10
150
+ TOP_SPATIAL_LAYERS: 10
151
+ TOP_OPENIMAGE_LAYERS: 10
152
+ TEST:
153
+ SEMANTIC_ON: True
154
+ INSTANCE_ON: True
155
+ PANOPTIC_ON: True
156
+ OVERLAP_THRESHOLD: 0.8
157
+ OBJECT_MASK_THRESHOLD: 0.8
158
+ SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE: false
159
+
160
+ # Spatial sampler
161
+ STROKE_SAMPLER:
162
+ MAX_CANDIDATE: 1
163
+ CANDIDATE_PROBS: [0.25, 0.25, 0.25, 0.25] # for training only
164
+ CANDIDATE_NAMES: ["Point", "Polygon", "Scribble", "Circle"]
165
+ DILATION: 3
166
+ CIRCLE:
167
+ NUM_STROKES: 5
168
+ STROKE_PRESET: ['object_like', 'object_like_middle', 'object_like_small']
169
+ STROKE_PROB: [0.33, 0.33, 0.33]
170
+ SCRIBBLE:
171
+ NUM_STROKES: 5
172
+ STROKE_PRESET: ['rand_curve', 'rand_curve_small']
173
+ STROKE_PROB: [0.5, 0.5]
174
+ POINT:
175
+ NUM_POINTS: 20
176
+ POLYGON:
177
+ MAX_POINTS: 9
178
+ EVAL:
179
+ MODE: 'best' # best/random/best_random
180
+ NEGATIVE: False
181
+ MAX_ITER: 20
182
+ IOU_ITER: 1
183
+ GROUNDING: False
184
+
185
+ # Multi-modal Architecture, order matters
186
+ ATTENTION_ARCH:
187
+ VARIABLE:
188
+ queries: ['object', 'grounding', 'spatial']
189
+ tokens: ['grounding', 'spatial']
190
+ memories: ['spatial']
191
+ SELF_ATTENTION:
192
+ queries:
193
+ object: ['queries_object']
194
+ grounding: ['queries_grounding', 'tokens_grounding']
195
+ spatial: ['queries_spatial', 'tokens_spatial', 'memories_spatial']
196
+ tokens:
197
+ grounding: ['queries_grounding', 'tokens_grounding']
198
+ spatial: ['tokens_spatial']
199
+ memories:
200
+ spatial: ['memories_spatial']
201
+ CROSS_ATTENTION:
202
+ queries:
203
+ object: True
204
+ grounding: True
205
+ spatial: True
206
+ memories:
207
+ spatial: True
208
+ tokens:
209
+ grounding: False
210
+ spatial: False
211
+ MASKING: ['tokens_spatial', 'tokens_grounding']
212
+ DUPLICATION:
213
+ queries:
214
+ grounding: 'queries_object'
215
+ spatial: 'queries_object'
216
+ SPATIAL_MEMORIES: 32
217
+ QUERY_NUMBER: 3
218
+
219
+ DATASETS:
220
+ TRAIN: ["coco_2017_train_panoptic_filtrefgumdval_with_sem_seg_caption_grounding_lvis",]
221
+ # TRAIN: ["coco_2017_train_panoptic_with_sem_seg_caption_grounding",]
222
+ TEST: ["coco_2017_val_panoptic_with_sem_seg", "pascalvoc_val_Point", "refcocog_val_umd"] # to evaluate instance and semantic performance as well
223
+ # TEST: ["pascalvoc_val_Point"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
224
+ # TEST: ["cocomini_val_Point", "cocomini_val_Circle", "cocomini_val_Scribble", "cocomini_val_Polygon", "cocomini_val_Box"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
225
+ # TEST: ["ade600_val_Point", "ade600_val_Circle", "ade600_val_Scribble", "ade600_val_Polygon", "ade600_val_Box"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
226
+ # TEST: ["openimage600_val_Point", "openimage600_val_Circle", "openimage600_val_Scribble", "openimage600_val_Polygon", "openimage600_val_Box"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
227
+ CLASS_CONCAT: false
228
+ SIZE_DIVISIBILITY: 32
229
+ PROPOSAL_FILES_TRAIN: []
230
+
231
+ INPUT:
232
+ PIXEL_MEAN: [123.675, 116.280, 103.530]
233
+ PIXEL_STD: [58.395, 57.120, 57.375]
234
+
235
+ TRAIN:
236
+ ASPECT_RATIO_GROUPING: true
237
+ BATCH_SIZE_TOTAL: 4
238
+ BATCH_SIZE_PER_GPU: 4
239
+ SHUFFLE: true
240
+
241
+ TEST:
242
+ DETECTIONS_PER_IMAGE: 100
243
+ NAME: coco_eval
244
+ IOU_TYPE: ['bbox', 'segm']
245
+ USE_MULTISCALE: false
246
+ BATCH_SIZE_TOTAL: 8
247
+ MODEL_FILE: ''
248
+ AUG:
249
+ ENABLED: False
250
+
251
+ DATALOADER:
252
+ FILTER_EMPTY_ANNOTATIONS: False
253
+ NUM_WORKERS: 8
254
+ LOAD_PROPOSALS: False
255
+ SAMPLER_TRAIN: "TrainingSampler"
256
+ ASPECT_RATIO_GROUPING: True
257
+
258
+ COCO:
259
+ INPUT:
260
+ MIN_SIZE_TRAIN: 800
261
+ MAX_SIZE_TRAIN: 1333
262
+ MIN_SIZE_TRAIN_SAMPLING: 'choice'
263
+ MIN_SIZE_TEST: 800
264
+ MAX_SIZE_TEST: 1333
265
+ IMAGE_SIZE: 1024
266
+ MIN_SCALE: 0.1
267
+ MAX_SCALE: 2.0
268
+ DATASET_MAPPER_NAME: "coco_interactive"
269
+ IGNORE_VALUE: 255
270
+ COLOR_AUG_SSD: False
271
+ SIZE_DIVISIBILITY: 32
272
+ RANDOM_FLIP: "horizontal"
273
+ MASK_FORMAT: "polygon"
274
+ FORMAT: "RGB"
275
+ CROP:
276
+ ENABLED: True
277
+ DATASET:
278
+ DATASET: 'coco'
279
+
280
+ # Validation dataset
281
+ ADE20K:
282
+ INPUT:
283
+ MIN_SIZE_TRAIN: 640
284
+ MIN_SIZE_TRAIN_SAMPLING: "choice"
285
+ MIN_SIZE_TEST: 640
286
+ MAX_SIZE_TRAIN: 2560
287
+ MAX_SIZE_TEST: 2560
288
+ MASK_FORMAT: "polygon"
289
+ CROP:
290
+ ENABLED: True
291
+ TYPE: "absolute"
292
+ SIZE: (640, 640)
293
+ SINGLE_CATEGORY_MAX_AREA: 1.0
294
+ COLOR_AUG_SSD: True
295
+ SIZE_DIVISIBILITY: 640 # used in dataset mapper
296
+ DATASET_MAPPER_NAME: "mask_former_panoptic"
297
+ FORMAT: "RGB"
298
+ DATASET:
299
+ DATASET: 'ade'
300
+
301
+ SBD:
302
+ INPUT:
303
+ MIN_SIZE_TEST: 800
304
+ MAX_SIZE_TEST: 1333
305
+ DATALOADER:
306
+ FILTER_EMPTY_ANNOTATIONS: False
307
+ NUM_WORKERS: 0
308
+ LOAD_PROPOSALS: False
309
+ SAMPLER_TRAIN: "TrainingSampler"
310
+ ASPECT_RATIO_GROUPING: False
311
+ TEST:
312
+ BATCH_SIZE_TOTAL: 1
313
+
314
+ VOC:
315
+ INPUT:
316
+ MIN_SIZE_TEST: 800
317
+ MAX_SIZE_TEST: 1333
318
+ DATALOADER:
319
+ FILTER_EMPTY_ANNOTATIONS: False
320
+ NUM_WORKERS: 0
321
+ LOAD_PROPOSALS: False
322
+ SAMPLER_TRAIN: "TrainingSampler"
323
+ ASPECT_RATIO_GROUPING: False
324
+ TEST:
325
+ BATCH_SIZE_TOTAL: 8
326
+
327
+ DAVIS:
328
+ INPUT:
329
+ MIN_SIZE_TEST: 800
330
+ MAX_SIZE_TEST: 1333
331
+ DATALOADER:
332
+ FILTER_EMPTY_ANNOTATIONS: False
333
+ NUM_WORKERS: 0
334
+ LOAD_PROPOSALS: False
335
+ SAMPLER_TRAIN: "TrainingSampler"
336
+ ASPECT_RATIO_GROUPING: False
337
+ TEST:
338
+ BATCH_SIZE_TOTAL: 8
339
+
340
+ VOS:
341
+ INPUT:
342
+ MIN_SIZE_TEST: 800
343
+ MAX_SIZE_TEST: 1333
344
+ DATALOADER:
345
+ FILTER_EMPTY_ANNOTATIONS: False
346
+ NUM_WORKERS: 0
347
+ LOAD_PROPOSALS: False
348
+ SAMPLER_TRAIN: "TrainingSampler"
349
+ ASPECT_RATIO_GROUPING: False
350
+ TEST:
351
+ BATCH_SIZE_TOTAL: 1
352
+
353
+ REF:
354
+ INPUT:
355
+ PIXEL_MEAN: [123.675, 116.280, 103.530]
356
+ PIXEL_STD: [58.395, 57.120, 57.375]
357
+ MIN_SIZE_TEST: 512
358
+ MAX_SIZE_TEST: 1024
359
+ FORMAT: "RGB"
360
+ SPATIAL: False
361
+ DATALOADER:
362
+ FILTER_EMPTY_ANNOTATIONS: False
363
+ NUM_WORKERS: 4
364
+ LOAD_PROPOSALS: False
365
+ SAMPLER_TRAIN: "TrainingSampler"
366
+ ASPECT_RATIO_GROUPING: False
367
+ TEST:
368
+ BATCH_SIZE_TOTAL: 8
369
+
370
+ # Detectron2 training config for optimizer and lr scheduler
371
+ SOLVER:
372
+ BASE_LR: 0.0001
373
+ STEPS: [0.88889, 0.96296]
374
+ MAX_ITER: 1
375
+ GAMMA: 0.1
376
+ WARMUP_FACTOR: 1.0
377
+ WARMUP_ITERS: 10
378
+ WARMUP_METHOD: "linear"
379
+ WEIGHT_DECAY: 0.05
380
+ OPTIMIZER: "ADAMW"
381
+ LR_SCHEDULER_NAME: "WarmupMultiStepLR"
382
+ LR_MULTIPLIER:
383
+ backbone: 0.1
384
+ lang_encoder: 0.1
385
+ FIX_PARAM:
386
+ backbone: True
387
+ lang_encoder: True
388
+ pixel_decoder: True
389
+ WEIGHT_DECAY_NORM: 0.0
390
+ WEIGHT_DECAY_EMBED: 0.0
391
+ CLIP_GRADIENTS:
392
+ ENABLED: True
393
+ CLIP_TYPE: "full_model"
394
+ CLIP_VALUE: 5.0 # 0.01
395
+ NORM_TYPE: 2.0
396
+ MAX_NUM_EPOCHS: 50
configs/seem/focall_unicl_lang_demo.yaml ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # X-Decoder -- Generalized Decoding for Pixel, Image, and Language
3
+ # Copyright (c) 2022 Microsoft
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # Written by Xueyan Zou ([email protected])
6
+ # --------------------------------------------------------
7
+
8
+ # Define Test/Trainer/Saving
9
+ PIPELINE: XDecoderPipeline
10
+ TRAINER: xdecoder
11
+ SAVE_DIR: '../../data/output/test'
12
+ base_path: "./"
13
+
14
+ # Resume Logistic
15
+ RESUME: false
16
+ WEIGHT: false
17
+ RESUME_FROM: ''
18
+ EVAL_AT_START: false
19
+
20
+ # Logging and Debug
21
+ WANDB: False
22
+ LOG_EVERY: 100
23
+ FIND_UNUSED_PARAMETERS: false
24
+
25
+ # Speed up training
26
+ FP16: false
27
+ PORT: '36873'
28
+
29
+ # misc
30
+ LOADER:
31
+ JOINT: False
32
+ KEY_DATASET: 'coco'
33
+
34
+ ##################
35
+ # Task settings
36
+ ##################
37
+ VERBOSE: true
38
+ MODEL:
39
+ NAME: seem_model_demo
40
+ HEAD: xdecoder_head
41
+ DIM_PROJ: 512
42
+ TEXT:
43
+ ARCH: vlpencoder
44
+ NAME: transformer
45
+ TOKENIZER: clip
46
+ CONTEXT_LENGTH: 77 # 77
47
+ WIDTH: 512
48
+ HEADS: 8
49
+ LAYERS: 12 # 6
50
+ AUTOGRESSIVE: True
51
+ BACKBONE:
52
+ NAME: focal
53
+ PRETRAINED: ''
54
+ LOAD_PRETRAINED: false
55
+ FOCAL:
56
+ PRETRAIN_IMG_SIZE: 224
57
+ PATCH_SIZE: 4
58
+ EMBED_DIM: 192
59
+ DEPTHS: [2, 2, 18, 2]
60
+ FOCAL_LEVELS: [4, 4, 4, 4]
61
+ FOCAL_WINDOWS: [3, 3, 3, 3]
62
+ DROP_PATH_RATE: 0.3
63
+ MLP_RATIO: 4.0
64
+ DROP_RATE: 0.0
65
+ PATCH_NORM: True
66
+ USE_CONV_EMBED: True
67
+ SCALING_MODULATOR: True
68
+ USE_CHECKPOINT: False
69
+ USE_POSTLN: true
70
+ USE_POSTLN_IN_MODULATION: false
71
+ USE_LAYERSCALE: True
72
+ OUT_FEATURES: ["res2", "res3", "res4", "res5"]
73
+ OUT_INDICES: [0, 1, 2, 3]
74
+ ENCODER:
75
+ NAME: transformer_encoder_fpn
76
+ IGNORE_VALUE: 255
77
+ NUM_CLASSES: 133
78
+ LOSS_WEIGHT: 1.0
79
+ CONVS_DIM: 512
80
+ MASK_DIM: 512
81
+ NORM: "GN"
82
+ IN_FEATURES: ["res2", "res3", "res4", "res5"]
83
+ DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES: ["res3", "res4", "res5"]
84
+ COMMON_STRIDE: 4
85
+ TRANSFORMER_ENC_LAYERS: 6
86
+ DECODER:
87
+ NAME: seem_demo
88
+ TRANSFORMER_IN_FEATURE: "multi_scale_pixel_decoder"
89
+ MASK:
90
+ ENABLED: True
91
+ DETECTION: False
92
+ SPATIAL:
93
+ ENABLED: True
94
+ MAX_ITER: 1
95
+ GROUNDING:
96
+ ENABLED: False
97
+ MAX_LEN: 5
98
+ TEXT_WEIGHT: 2.0
99
+ CLASS_WEIGHT: 0.5
100
+ VISUAL:
101
+ ENABLED: False
102
+ AUDIO:
103
+ ENABLED: False
104
+ RETRIEVAL:
105
+ ENABLED: False
106
+ LVIS:
107
+ ENABLED: True
108
+ THRES: 0.7
109
+ OPENIMAGE:
110
+ ENABLED: False
111
+ NEGATIVE_SAMPLES: 5
112
+ GROUNDING:
113
+ ENABLED: False
114
+ MAX_LEN: 5
115
+ CAPTION:
116
+ ENABLED: False
117
+ PHRASE_PROB: 0.5
118
+ SIM_THRES: 0.95
119
+ DEEP_SUPERVISION: True
120
+ NO_OBJECT_WEIGHT: 0.1
121
+ GCLASS_WEIGHT: 0.4
122
+ GMASK_WEIGHT: 1.0
123
+ GDICE_WEIGHT: 1.0
124
+ SCLASS_WEIGHT: 0.4
125
+ SMASK_WEIGHT: 1.0
126
+ SDICE_WEIGHT: 1.0
127
+ OCLASS_WEIGHT: 0.4
128
+ OMASK_WEIGHT: 1.0
129
+ ODICE_WEIGHT: 1.0
130
+ CLASS_WEIGHT: 2.0
131
+ MASK_WEIGHT: 5.0
132
+ DICE_WEIGHT: 5.0
133
+ BBOX_WEIGHT: 5.0
134
+ GIOU_WEIGHT: 2.0
135
+ CAPTION_WEIGHT: 2.0
136
+ COST_SPATIAL:
137
+ CLASS_WEIGHT: 5.0
138
+ MASK_WEIGHT: 2.0
139
+ DICE_WEIGHT: 2.0
140
+ HIDDEN_DIM: 512
141
+ NUM_OBJECT_QUERIES: 101
142
+ NHEADS: 8
143
+ DROPOUT: 0.0
144
+ DIM_FEEDFORWARD: 2048
145
+ MAX_SPATIAL_LEN: [512, 512, 512, 512]
146
+ # ENC_LAYERS: 0
147
+ PRE_NORM: False
148
+ ENFORCE_INPUT_PROJ: False
149
+ SIZE_DIVISIBILITY: 32
150
+ TRAIN_NUM_POINTS: 12544
151
+ OVERSAMPLE_RATIO: 3.0
152
+ IMPORTANCE_SAMPLE_RATIO: 0.75
153
+ DEC_LAYERS: 10 # 9 decoder layers, add one for the loss on learnable query
154
+ TOP_GROUNDING_LAYERS: 10
155
+ TOP_CAPTION_LAYERS: 10
156
+ TOP_SPATIAL_LAYERS: 10
157
+ TOP_OPENIMAGE_LAYERS: 10
158
+ TEST:
159
+ SEMANTIC_ON: True
160
+ INSTANCE_ON: True
161
+ PANOPTIC_ON: True
162
+ OVERLAP_THRESHOLD: 0.8
163
+ OBJECT_MASK_THRESHOLD: 0.4
164
+ SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE: false
165
+ DETECTIONS_PER_IMAGE: 100
166
+
167
+ # Multi-modal Architecture, order matters
168
+ ATTENTION_ARCH:
169
+ VARIABLE:
170
+ queries: ['object']
171
+ tokens: ['grounding', 'spatial', 'visual', 'audio']
172
+ SELF_ATTENTION:
173
+ queries:
174
+ object: ['queries_object', 'tokens_grounding', 'tokens_spatial', 'tokens_visual', 'tokens_audio']
175
+ tokens:
176
+ grounding: ['queries_object', 'tokens_grounding']
177
+ spatial: ['tokens_spatial']
178
+ visual: ['tokens_visual']
179
+ audio: ['queries_object', 'tokens_audio']
180
+ CROSS_ATTENTION:
181
+ queries:
182
+ object: True
183
+ tokens:
184
+ grounding: False
185
+ spatial: False
186
+ visual: False
187
+ audio: False
188
+ MASKING: ['tokens_spatial', 'tokens_grounding', 'tokens_visual', 'tokens_audio']
189
+ DUPLICATION:
190
+ queries:
191
+ grounding: 'queries_object'
192
+ spatial: 'queries_object'
193
+ SPATIAL_MEMORIES: 32
194
+
195
+ INPUT:
196
+ PIXEL_MEAN: [123.675, 116.280, 103.530]
197
+ PIXEL_STD: [58.395, 57.120, 57.375]
configs/seem/focall_unicl_lang_v0.yaml ADDED
@@ -0,0 +1,401 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # X-Decoder -- Generalized Decoding for Pixel, Image, and Language
3
+ # Copyright (c) 2022 Microsoft
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # Written by Xueyan Zou ([email protected])
6
+ # --------------------------------------------------------
7
+
8
+ # Define Test/Trainer/Saving
9
+ PIPELINE: XDecoderPipeline
10
+ TRAINER: xdecoder
11
+ SAVE_DIR: '../../data/output/test'
12
+ base_path: "./"
13
+
14
+ # Resume Logistic
15
+ RESUME: false
16
+ WEIGHT: false
17
+ RESUME_FROM: ''
18
+ EVAL_AT_START: false
19
+
20
+ # Logging and Debug
21
+ WANDB: False
22
+ LOG_EVERY: 100
23
+ FIND_UNUSED_PARAMETERS: false
24
+
25
+ # Speed up training
26
+ FP16: false
27
+ PORT: '36873'
28
+
29
+ # misc
30
+ LOADER:
31
+ JOINT: False
32
+ KEY_DATASET: 'coco'
33
+
34
+ ##################
35
+ # Task settings
36
+ ##################
37
+ VERBOSE: true
38
+ MODEL:
39
+ NAME: seem_model_v0
40
+ HEAD: xdecoder_head
41
+ MASK_ON: false
42
+ KEYPOINT_ON: false
43
+ LOAD_PROPOSALS: false
44
+ DIM_PROJ: 512
45
+ TEXT:
46
+ ARCH: vlpencoder
47
+ NAME: transformer
48
+ TOKENIZER: clip
49
+ CONTEXT_LENGTH: 77 # 77
50
+ WIDTH: 512
51
+ HEADS: 8
52
+ LAYERS: 12 # 6
53
+ AUTOGRESSIVE: True
54
+ BACKBONE:
55
+ NAME: focal
56
+ PRETRAINED: ''
57
+ LOAD_PRETRAINED: false
58
+ FOCAL:
59
+ PRETRAIN_IMG_SIZE: 224
60
+ PATCH_SIZE: 4
61
+ EMBED_DIM: 192
62
+ DEPTHS: [2, 2, 18, 2]
63
+ FOCAL_LEVELS: [4, 4, 4, 4]
64
+ FOCAL_WINDOWS: [3, 3, 3, 3]
65
+ DROP_PATH_RATE: 0.3
66
+ MLP_RATIO: 4.0
67
+ DROP_RATE: 0.0
68
+ PATCH_NORM: True
69
+ USE_CONV_EMBED: True
70
+ SCALING_MODULATOR: True
71
+ USE_CHECKPOINT: False
72
+ USE_POSTLN: true
73
+ USE_POSTLN_IN_MODULATION: false
74
+ USE_LAYERSCALE: True
75
+ OUT_FEATURES: ["res2", "res3", "res4", "res5"]
76
+ OUT_INDICES: [0, 1, 2, 3]
77
+ ENCODER:
78
+ NAME: transformer_encoder_fpn
79
+ IGNORE_VALUE: 255
80
+ NUM_CLASSES: 133
81
+ LOSS_WEIGHT: 1.0
82
+ CONVS_DIM: 512
83
+ MASK_DIM: 512
84
+ NORM: "GN"
85
+ IN_FEATURES: ["res2", "res3", "res4", "res5"]
86
+ DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES: ["res3", "res4", "res5"]
87
+ COMMON_STRIDE: 4
88
+ TRANSFORMER_ENC_LAYERS: 6
89
+ DECODER:
90
+ NAME: seem_v0
91
+ TRANSFORMER_IN_FEATURE: "multi_scale_pixel_decoder"
92
+ MASK:
93
+ ENABLED: True
94
+ DETECTION: False
95
+ SPATIAL:
96
+ ENABLED: True
97
+ MAX_ITER: 1
98
+ GROUNDING:
99
+ ENABLED: True
100
+ MAX_LEN: 5
101
+ TEXT_WEIGHT: 2.0
102
+ CLASS_WEIGHT: 0.5
103
+ RETRIEVAL:
104
+ ENABLED: False
105
+ LVIS:
106
+ ENABLED: True
107
+ THRES: 0.7
108
+ OPENIMAGE:
109
+ ENABLED: False
110
+ NEGATIVE_SAMPLES: 5
111
+ GROUNDING:
112
+ ENABLED: False
113
+ MAX_LEN: 5
114
+ CAPTION:
115
+ ENABLED: False
116
+ PHRASE_PROB: 0.5
117
+ SIM_THRES: 0.95
118
+ DEEP_SUPERVISION: True
119
+ NO_OBJECT_WEIGHT: 0.1
120
+ GCLASS_WEIGHT: 0.4
121
+ GMASK_WEIGHT: 1.0
122
+ GDICE_WEIGHT: 1.0
123
+ SCLASS_WEIGHT: 0.4
124
+ SMASK_WEIGHT: 1.0
125
+ SDICE_WEIGHT: 1.0
126
+ OCLASS_WEIGHT: 0.4
127
+ OMASK_WEIGHT: 1.0
128
+ ODICE_WEIGHT: 1.0
129
+ CLASS_WEIGHT: 2.0
130
+ MASK_WEIGHT: 5.0
131
+ DICE_WEIGHT: 5.0
132
+ BBOX_WEIGHT: 5.0
133
+ GIOU_WEIGHT: 2.0
134
+ CAPTION_WEIGHT: 2.0
135
+ COST_SPATIAL:
136
+ CLASS_WEIGHT: 5.0
137
+ MASK_WEIGHT: 2.0
138
+ DICE_WEIGHT: 2.0
139
+ HIDDEN_DIM: 512
140
+ NUM_OBJECT_QUERIES: 101
141
+ NHEADS: 8
142
+ DROPOUT: 0.0
143
+ DIM_FEEDFORWARD: 2048
144
+ MAX_SPATIAL_LEN: [512, 512, 512, 512]
145
+ # ENC_LAYERS: 0
146
+ PRE_NORM: False
147
+ ENFORCE_INPUT_PROJ: False
148
+ SIZE_DIVISIBILITY: 32
149
+ TRAIN_NUM_POINTS: 12544
150
+ OVERSAMPLE_RATIO: 3.0
151
+ IMPORTANCE_SAMPLE_RATIO: 0.75
152
+ DEC_LAYERS: 10 # 9 decoder layers, add one for the loss on learnable query
153
+ TOP_GROUNDING_LAYERS: 10
154
+ TOP_CAPTION_LAYERS: 10
155
+ TOP_SPATIAL_LAYERS: 10
156
+ TOP_OPENIMAGE_LAYERS: 10
157
+ TEST:
158
+ SEMANTIC_ON: True
159
+ INSTANCE_ON: True
160
+ PANOPTIC_ON: True
161
+ OVERLAP_THRESHOLD: 0.8
162
+ OBJECT_MASK_THRESHOLD: 0.8
163
+ SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE: false
164
+
165
+ # Spatial sampler
166
+ STROKE_SAMPLER:
167
+ MAX_CANDIDATE: 1
168
+ CANDIDATE_PROBS: [0.25, 0.25, 0.25, 0.25] # for training only
169
+ CANDIDATE_NAMES: ["Point", "Polygon", "Scribble", "Circle"]
170
+ DILATION: 3
171
+ CIRCLE:
172
+ NUM_STROKES: 5
173
+ STROKE_PRESET: ['object_like', 'object_like_middle', 'object_like_small']
174
+ STROKE_PROB: [0.33, 0.33, 0.33]
175
+ SCRIBBLE:
176
+ NUM_STROKES: 5
177
+ STROKE_PRESET: ['rand_curve', 'rand_curve_small']
178
+ STROKE_PROB: [0.5, 0.5]
179
+ POINT:
180
+ NUM_POINTS: 20
181
+ POLYGON:
182
+ MAX_POINTS: 9
183
+ EVAL:
184
+ MODE: 'best' # best/random/best_random
185
+ NEGATIVE: False
186
+ MAX_ITER: 20
187
+ IOU_ITER: 1
188
+ GROUNDING: False
189
+
190
+ # Multi-modal Architecture, order matters
191
+ ATTENTION_ARCH:
192
+ VARIABLE:
193
+ queries: ['object', 'grounding', 'spatial']
194
+ tokens: ['grounding', 'spatial']
195
+ memories: ['spatial']
196
+ SELF_ATTENTION:
197
+ queries:
198
+ object: ['queries_object']
199
+ grounding: ['queries_grounding', 'tokens_grounding']
200
+ spatial: ['queries_spatial', 'tokens_spatial', 'memories_spatial']
201
+ tokens:
202
+ grounding: ['queries_grounding', 'tokens_grounding']
203
+ spatial: ['tokens_spatial']
204
+ memories:
205
+ spatial: ['memories_spatial']
206
+ CROSS_ATTENTION:
207
+ queries:
208
+ object: True
209
+ grounding: True
210
+ spatial: True
211
+ memories:
212
+ spatial: True
213
+ tokens:
214
+ grounding: False
215
+ spatial: False
216
+ MASKING: ['tokens_spatial', 'tokens_grounding']
217
+ DUPLICATION:
218
+ queries:
219
+ grounding: 'queries_object'
220
+ spatial: 'queries_object'
221
+ SPATIAL_MEMORIES: 32
222
+ QUERY_NUMBER: 3
223
+
224
+ DATASETS:
225
+ TRAIN: ["coco_2017_train_panoptic_filtrefgumdval_with_sem_seg_caption_grounding_lvis",]
226
+ # TRAIN: ["coco_2017_train_panoptic_with_sem_seg_caption_grounding",]
227
+ TEST: ["coco_2017_val_panoptic_with_sem_seg", "pascalvoc_val_Point", "refcocog_val_umd"] # to evaluate instance and semantic performance as well
228
+ # TEST: ["pascalvoc_val_Point"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
229
+ # TEST: ["cocomini_val_Point", "cocomini_val_Circle", "cocomini_val_Scribble", "cocomini_val_Polygon", "cocomini_val_Box"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
230
+ # TEST: ["ade600_val_Point", "ade600_val_Circle", "ade600_val_Scribble", "ade600_val_Polygon", "ade600_val_Box"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
231
+ # TEST: ["openimage600_val_Point", "openimage600_val_Circle", "openimage600_val_Scribble", "openimage600_val_Polygon", "openimage600_val_Box"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
232
+ CLASS_CONCAT: false
233
+ SIZE_DIVISIBILITY: 32
234
+ PROPOSAL_FILES_TRAIN: []
235
+
236
+ INPUT:
237
+ PIXEL_MEAN: [123.675, 116.280, 103.530]
238
+ PIXEL_STD: [58.395, 57.120, 57.375]
239
+
240
+ TRAIN:
241
+ ASPECT_RATIO_GROUPING: true
242
+ BATCH_SIZE_TOTAL: 4
243
+ BATCH_SIZE_PER_GPU: 4
244
+ SHUFFLE: true
245
+
246
+ TEST:
247
+ DETECTIONS_PER_IMAGE: 100
248
+ NAME: coco_eval
249
+ IOU_TYPE: ['bbox', 'segm']
250
+ USE_MULTISCALE: false
251
+ BATCH_SIZE_TOTAL: 8
252
+ MODEL_FILE: ''
253
+ AUG:
254
+ ENABLED: False
255
+
256
+ DATALOADER:
257
+ FILTER_EMPTY_ANNOTATIONS: False
258
+ NUM_WORKERS: 8
259
+ LOAD_PROPOSALS: False
260
+ SAMPLER_TRAIN: "TrainingSampler"
261
+ ASPECT_RATIO_GROUPING: True
262
+
263
+ COCO:
264
+ INPUT:
265
+ MIN_SIZE_TRAIN: 800
266
+ MAX_SIZE_TRAIN: 1333
267
+ MIN_SIZE_TRAIN_SAMPLING: 'choice'
268
+ MIN_SIZE_TEST: 800
269
+ MAX_SIZE_TEST: 1333
270
+ IMAGE_SIZE: 1024
271
+ MIN_SCALE: 0.1
272
+ MAX_SCALE: 2.0
273
+ DATASET_MAPPER_NAME: "coco_interactive"
274
+ IGNORE_VALUE: 255
275
+ COLOR_AUG_SSD: False
276
+ SIZE_DIVISIBILITY: 32
277
+ RANDOM_FLIP: "horizontal"
278
+ MASK_FORMAT: "polygon"
279
+ FORMAT: "RGB"
280
+ CROP:
281
+ ENABLED: True
282
+ DATASET:
283
+ DATASET: 'coco'
284
+
285
+ # Validation dataset
286
+ ADE20K:
287
+ INPUT:
288
+ MIN_SIZE_TRAIN: 640
289
+ MIN_SIZE_TRAIN_SAMPLING: "choice"
290
+ MIN_SIZE_TEST: 640
291
+ MAX_SIZE_TRAIN: 2560
292
+ MAX_SIZE_TEST: 2560
293
+ MASK_FORMAT: "polygon"
294
+ CROP:
295
+ ENABLED: True
296
+ TYPE: "absolute"
297
+ SIZE: (640, 640)
298
+ SINGLE_CATEGORY_MAX_AREA: 1.0
299
+ COLOR_AUG_SSD: True
300
+ SIZE_DIVISIBILITY: 640 # used in dataset mapper
301
+ DATASET_MAPPER_NAME: "mask_former_panoptic"
302
+ FORMAT: "RGB"
303
+ DATASET:
304
+ DATASET: 'ade'
305
+
306
+ SBD:
307
+ INPUT:
308
+ MIN_SIZE_TEST: 800
309
+ MAX_SIZE_TEST: 1333
310
+ DATALOADER:
311
+ FILTER_EMPTY_ANNOTATIONS: False
312
+ NUM_WORKERS: 0
313
+ LOAD_PROPOSALS: False
314
+ SAMPLER_TRAIN: "TrainingSampler"
315
+ ASPECT_RATIO_GROUPING: False
316
+ TEST:
317
+ BATCH_SIZE_TOTAL: 1
318
+
319
+ VOC:
320
+ INPUT:
321
+ MIN_SIZE_TEST: 800
322
+ MAX_SIZE_TEST: 1333
323
+ DATALOADER:
324
+ FILTER_EMPTY_ANNOTATIONS: False
325
+ NUM_WORKERS: 0
326
+ LOAD_PROPOSALS: False
327
+ SAMPLER_TRAIN: "TrainingSampler"
328
+ ASPECT_RATIO_GROUPING: False
329
+ TEST:
330
+ BATCH_SIZE_TOTAL: 8
331
+
332
+ DAVIS:
333
+ INPUT:
334
+ MIN_SIZE_TEST: 800
335
+ MAX_SIZE_TEST: 1333
336
+ DATALOADER:
337
+ FILTER_EMPTY_ANNOTATIONS: False
338
+ NUM_WORKERS: 0
339
+ LOAD_PROPOSALS: False
340
+ SAMPLER_TRAIN: "TrainingSampler"
341
+ ASPECT_RATIO_GROUPING: False
342
+ TEST:
343
+ BATCH_SIZE_TOTAL: 8
344
+
345
+ VOS:
346
+ INPUT:
347
+ MIN_SIZE_TEST: 800
348
+ MAX_SIZE_TEST: 1333
349
+ DATALOADER:
350
+ FILTER_EMPTY_ANNOTATIONS: False
351
+ NUM_WORKERS: 0
352
+ LOAD_PROPOSALS: False
353
+ SAMPLER_TRAIN: "TrainingSampler"
354
+ ASPECT_RATIO_GROUPING: False
355
+ TEST:
356
+ BATCH_SIZE_TOTAL: 1
357
+
358
+ REF:
359
+ INPUT:
360
+ PIXEL_MEAN: [123.675, 116.280, 103.530]
361
+ PIXEL_STD: [58.395, 57.120, 57.375]
362
+ MIN_SIZE_TEST: 512
363
+ MAX_SIZE_TEST: 1024
364
+ FORMAT: "RGB"
365
+ SPATIAL: False
366
+ DATALOADER:
367
+ FILTER_EMPTY_ANNOTATIONS: False
368
+ NUM_WORKERS: 4
369
+ LOAD_PROPOSALS: False
370
+ SAMPLER_TRAIN: "TrainingSampler"
371
+ ASPECT_RATIO_GROUPING: False
372
+ TEST:
373
+ BATCH_SIZE_TOTAL: 8
374
+
375
+ # Detectron2 training config for optimizer and lr scheduler
376
+ SOLVER:
377
+ BASE_LR: 0.0001
378
+ STEPS: [0.88889, 0.96296]
379
+ MAX_ITER: 1
380
+ GAMMA: 0.1
381
+ WARMUP_FACTOR: 1.0
382
+ WARMUP_ITERS: 10
383
+ WARMUP_METHOD: "linear"
384
+ WEIGHT_DECAY: 0.05
385
+ OPTIMIZER: "ADAMW"
386
+ LR_SCHEDULER_NAME: "WarmupMultiStepLR"
387
+ LR_MULTIPLIER:
388
+ backbone: 0.1
389
+ lang_encoder: 0.1
390
+ FIX_PARAM:
391
+ backbone: True
392
+ lang_encoder: True
393
+ pixel_decoder: True
394
+ WEIGHT_DECAY_NORM: 0.0
395
+ WEIGHT_DECAY_EMBED: 0.0
396
+ CLIP_GRADIENTS:
397
+ ENABLED: True
398
+ CLIP_TYPE: "full_model"
399
+ CLIP_VALUE: 5.0 # 0.01
400
+ NORM_TYPE: 2.0
401
+ MAX_NUM_EPOCHS: 50
configs/seem/focall_unicl_lang_v1.yaml ADDED
@@ -0,0 +1,401 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # X-Decoder -- Generalized Decoding for Pixel, Image, and Language
3
+ # Copyright (c) 2022 Microsoft
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # Written by Xueyan Zou ([email protected])
6
+ # --------------------------------------------------------
7
+
8
+ # Define Test/Trainer/Saving
9
+ PIPELINE: XDecoderPipeline
10
+ TRAINER: xdecoder
11
+ SAVE_DIR: '../../data/output/test'
12
+ base_path: "./"
13
+
14
+ # Resume Logistic
15
+ RESUME: false
16
+ WEIGHT: false
17
+ RESUME_FROM: ''
18
+ EVAL_AT_START: False
19
+
20
+ # Logging and Debug
21
+ WANDB: False
22
+ LOG_EVERY: 100
23
+ FIND_UNUSED_PARAMETERS: false
24
+
25
+ # Speed up training
26
+ FP16: false
27
+ PORT: '36873'
28
+
29
+ # misc
30
+ LOADER:
31
+ JOINT: False
32
+ KEY_DATASET: 'coco'
33
+
34
+ ##################
35
+ # Task settings
36
+ ##################
37
+ VERBOSE: true
38
+ MODEL:
39
+ NAME: seem_model_v1
40
+ HEAD: xdecoder_head
41
+ MASK_ON: false
42
+ KEYPOINT_ON: false
43
+ LOAD_PROPOSALS: false
44
+ DIM_PROJ: 512
45
+ TEXT:
46
+ ARCH: vlpencoder
47
+ NAME: transformer
48
+ TOKENIZER: clip
49
+ CONTEXT_LENGTH: 77 # 77
50
+ WIDTH: 512
51
+ HEADS: 8
52
+ LAYERS: 12 # 6
53
+ AUTOGRESSIVE: True
54
+ BACKBONE:
55
+ NAME: focal
56
+ PRETRAINED: ''
57
+ LOAD_PRETRAINED: false
58
+ FOCAL:
59
+ PRETRAIN_IMG_SIZE: 224
60
+ PATCH_SIZE: 4
61
+ EMBED_DIM: 192
62
+ DEPTHS: [2, 2, 18, 2]
63
+ FOCAL_LEVELS: [4, 4, 4, 4]
64
+ FOCAL_WINDOWS: [3, 3, 3, 3]
65
+ DROP_PATH_RATE: 0.3
66
+ MLP_RATIO: 4.0
67
+ DROP_RATE: 0.0
68
+ PATCH_NORM: True
69
+ USE_CONV_EMBED: True
70
+ SCALING_MODULATOR: True
71
+ USE_CHECKPOINT: False
72
+ USE_POSTLN: true
73
+ USE_POSTLN_IN_MODULATION: false
74
+ USE_LAYERSCALE: True
75
+ OUT_FEATURES: ["res2", "res3", "res4", "res5"]
76
+ OUT_INDICES: [0, 1, 2, 3]
77
+ ENCODER:
78
+ NAME: transformer_encoder_fpn
79
+ IGNORE_VALUE: 255
80
+ NUM_CLASSES: 133
81
+ LOSS_WEIGHT: 1.0
82
+ CONVS_DIM: 512
83
+ MASK_DIM: 512
84
+ NORM: "GN"
85
+ IN_FEATURES: ["res2", "res3", "res4", "res5"]
86
+ DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES: ["res3", "res4", "res5"]
87
+ COMMON_STRIDE: 4
88
+ TRANSFORMER_ENC_LAYERS: 6
89
+ DECODER:
90
+ NAME: seem_v1
91
+ TRANSFORMER_IN_FEATURE: "multi_scale_pixel_decoder"
92
+ MASK:
93
+ ENABLED: True
94
+ DETECTION: False
95
+ SPATIAL:
96
+ ENABLED: True
97
+ MAX_ITER: 1
98
+ GROUNDING:
99
+ ENABLED: True
100
+ MAX_LEN: 5
101
+ TEXT_WEIGHT: 2.0
102
+ CLASS_WEIGHT: 0.5
103
+ RETRIEVAL:
104
+ ENABLED: False
105
+ LVIS:
106
+ ENABLED: True
107
+ THRES: 0.7
108
+ OPENIMAGE:
109
+ ENABLED: False
110
+ NEGATIVE_SAMPLES: 5
111
+ GROUNDING:
112
+ ENABLED: False
113
+ MAX_LEN: 5
114
+ CAPTION:
115
+ ENABLED: False
116
+ PHRASE_PROB: 0.5
117
+ SIM_THRES: 0.95
118
+ DEEP_SUPERVISION: True
119
+ NO_OBJECT_WEIGHT: 0.1
120
+ GCLASS_WEIGHT: 0.4
121
+ GMASK_WEIGHT: 1.0
122
+ GDICE_WEIGHT: 1.0
123
+ SCLASS_WEIGHT: 0.4
124
+ SMASK_WEIGHT: 1.0
125
+ SDICE_WEIGHT: 1.0
126
+ OCLASS_WEIGHT: 0.4
127
+ OMASK_WEIGHT: 1.0
128
+ ODICE_WEIGHT: 1.0
129
+ CLASS_WEIGHT: 2.0
130
+ MASK_WEIGHT: 5.0
131
+ DICE_WEIGHT: 5.0
132
+ BBOX_WEIGHT: 5.0
133
+ GIOU_WEIGHT: 2.0
134
+ CAPTION_WEIGHT: 2.0
135
+ COST_SPATIAL:
136
+ CLASS_WEIGHT: 5.0
137
+ MASK_WEIGHT: 2.0
138
+ DICE_WEIGHT: 2.0
139
+ HIDDEN_DIM: 512
140
+ NUM_OBJECT_QUERIES: 101
141
+ NHEADS: 8
142
+ DROPOUT: 0.0
143
+ DIM_FEEDFORWARD: 2048
144
+ MAX_SPATIAL_LEN: [512, 512, 512, 512]
145
+ # ENC_LAYERS: 0
146
+ PRE_NORM: False
147
+ ENFORCE_INPUT_PROJ: False
148
+ SIZE_DIVISIBILITY: 32
149
+ TRAIN_NUM_POINTS: 12544
150
+ OVERSAMPLE_RATIO: 3.0
151
+ IMPORTANCE_SAMPLE_RATIO: 0.75
152
+ DEC_LAYERS: 10 # 9 decoder layers, add one for the loss on learnable query
153
+ TOP_GROUNDING_LAYERS: 10
154
+ TOP_CAPTION_LAYERS: 10
155
+ TOP_SPATIAL_LAYERS: 10
156
+ TOP_OPENIMAGE_LAYERS: 10
157
+ TEST:
158
+ SEMANTIC_ON: True
159
+ INSTANCE_ON: True
160
+ PANOPTIC_ON: True
161
+ OVERLAP_THRESHOLD: 0.8
162
+ OBJECT_MASK_THRESHOLD: 0.8
163
+ SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE: false
164
+
165
+ # Spatial sampler
166
+ STROKE_SAMPLER:
167
+ MAX_CANDIDATE: 1
168
+ CANDIDATE_PROBS: [0.25, 0.25, 0.25, 0.25] # for training only
169
+ CANDIDATE_NAMES: ["Point", "Polygon", "Scribble", "Circle"]
170
+ DILATION: 3
171
+ CIRCLE:
172
+ NUM_STROKES: 5
173
+ STROKE_PRESET: ['object_like', 'object_like_middle', 'object_like_small']
174
+ STROKE_PROB: [0.33, 0.33, 0.33]
175
+ SCRIBBLE:
176
+ NUM_STROKES: 5
177
+ STROKE_PRESET: ['rand_curve', 'rand_curve_small']
178
+ STROKE_PROB: [0.5, 0.5]
179
+ POINT:
180
+ NUM_POINTS: 20
181
+ POLYGON:
182
+ MAX_POINTS: 9
183
+ EVAL:
184
+ MODE: 'best' # best/random/best_random
185
+ NEGATIVE: False
186
+ MAX_ITER: 20
187
+ IOU_ITER: 1
188
+ GROUNDING: False
189
+
190
+ # Multi-modal Architecture, order matters
191
+ ATTENTION_ARCH:
192
+ VARIABLE:
193
+ queries: ['object', 'grounding', 'spatial']
194
+ tokens: ['grounding', 'spatial']
195
+ memories: ['spatial']
196
+ SELF_ATTENTION:
197
+ queries:
198
+ object: ['queries_object']
199
+ grounding: ['queries_grounding', 'tokens_grounding']
200
+ spatial: ['queries_spatial', 'tokens_spatial', 'memories_spatial']
201
+ tokens:
202
+ grounding: ['queries_grounding', 'tokens_grounding']
203
+ spatial: ['tokens_spatial']
204
+ memories:
205
+ spatial: ['memories_spatial']
206
+ CROSS_ATTENTION:
207
+ queries:
208
+ object: True
209
+ grounding: True
210
+ spatial: True
211
+ memories:
212
+ spatial: True
213
+ tokens:
214
+ grounding: False
215
+ spatial: False
216
+ MASKING: ['tokens_spatial', 'tokens_grounding']
217
+ DUPLICATION:
218
+ queries:
219
+ grounding: 'queries_object'
220
+ spatial: 'queries_object'
221
+ SPATIAL_MEMORIES: 32
222
+ QUERY_NUMBER: 3
223
+
224
+ DATASETS:
225
+ TRAIN: ["coco_2017_train_panoptic_filtrefgumdval_with_sem_seg_caption_grounding_lvis",]
226
+ # TRAIN: ["coco_2017_train_panoptic_with_sem_seg_caption_grounding",]
227
+ TEST: ["coco_2017_val_panoptic_with_sem_seg", "pascalvoc_val_Point", "refcocog_val_umd"] # to evaluate instance and semantic performance as well
228
+ # TEST: ["pascalvoc_val_Point"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
229
+ # TEST: ["cocomini_val_Point", "cocomini_val_Circle", "cocomini_val_Scribble", "cocomini_val_Polygon", "cocomini_val_Box"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
230
+ # TEST: ["ade600_val_Point", "ade600_val_Circle", "ade600_val_Scribble", "ade600_val_Polygon", "ade600_val_Box"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
231
+ # TEST: ["openimage600_val_Point", "openimage600_val_Circle", "openimage600_val_Scribble", "openimage600_val_Polygon", "openimage600_val_Box"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
232
+ CLASS_CONCAT: false
233
+ SIZE_DIVISIBILITY: 32
234
+ PROPOSAL_FILES_TRAIN: []
235
+
236
+ INPUT:
237
+ PIXEL_MEAN: [123.675, 116.280, 103.530]
238
+ PIXEL_STD: [58.395, 57.120, 57.375]
239
+
240
+ TRAIN:
241
+ ASPECT_RATIO_GROUPING: true
242
+ BATCH_SIZE_TOTAL: 4
243
+ BATCH_SIZE_PER_GPU: 4
244
+ SHUFFLE: true
245
+
246
+ TEST:
247
+ DETECTIONS_PER_IMAGE: 100
248
+ NAME: coco_eval
249
+ IOU_TYPE: ['bbox', 'segm']
250
+ USE_MULTISCALE: false
251
+ BATCH_SIZE_TOTAL: 8
252
+ MODEL_FILE: ''
253
+ AUG:
254
+ ENABLED: False
255
+
256
+ DATALOADER:
257
+ FILTER_EMPTY_ANNOTATIONS: False
258
+ NUM_WORKERS: 8
259
+ LOAD_PROPOSALS: False
260
+ SAMPLER_TRAIN: "TrainingSampler"
261
+ ASPECT_RATIO_GROUPING: True
262
+
263
+ COCO:
264
+ INPUT:
265
+ MIN_SIZE_TRAIN: 800
266
+ MAX_SIZE_TRAIN: 1333
267
+ MIN_SIZE_TRAIN_SAMPLING: 'choice'
268
+ MIN_SIZE_TEST: 800
269
+ MAX_SIZE_TEST: 1333
270
+ IMAGE_SIZE: 1024
271
+ MIN_SCALE: 0.1
272
+ MAX_SCALE: 2.0
273
+ DATASET_MAPPER_NAME: "coco_interactive"
274
+ IGNORE_VALUE: 255
275
+ COLOR_AUG_SSD: False
276
+ SIZE_DIVISIBILITY: 32
277
+ RANDOM_FLIP: "horizontal"
278
+ MASK_FORMAT: "polygon"
279
+ FORMAT: "RGB"
280
+ CROP:
281
+ ENABLED: True
282
+ DATASET:
283
+ DATASET: 'coco'
284
+
285
+ # Validation dataset
286
+ ADE20K:
287
+ INPUT:
288
+ MIN_SIZE_TRAIN: 640
289
+ MIN_SIZE_TRAIN_SAMPLING: "choice"
290
+ MIN_SIZE_TEST: 640
291
+ MAX_SIZE_TRAIN: 2560
292
+ MAX_SIZE_TEST: 2560
293
+ MASK_FORMAT: "polygon"
294
+ CROP:
295
+ ENABLED: True
296
+ TYPE: "absolute"
297
+ SIZE: (640, 640)
298
+ SINGLE_CATEGORY_MAX_AREA: 1.0
299
+ COLOR_AUG_SSD: True
300
+ SIZE_DIVISIBILITY: 640 # used in dataset mapper
301
+ DATASET_MAPPER_NAME: "mask_former_panoptic"
302
+ FORMAT: "RGB"
303
+ DATASET:
304
+ DATASET: 'ade'
305
+
306
+ SBD:
307
+ INPUT:
308
+ MIN_SIZE_TEST: 800
309
+ MAX_SIZE_TEST: 1333
310
+ DATALOADER:
311
+ FILTER_EMPTY_ANNOTATIONS: False
312
+ NUM_WORKERS: 0
313
+ LOAD_PROPOSALS: False
314
+ SAMPLER_TRAIN: "TrainingSampler"
315
+ ASPECT_RATIO_GROUPING: False
316
+ TEST:
317
+ BATCH_SIZE_TOTAL: 1
318
+
319
+ VOC:
320
+ INPUT:
321
+ MIN_SIZE_TEST: 800
322
+ MAX_SIZE_TEST: 1333
323
+ DATALOADER:
324
+ FILTER_EMPTY_ANNOTATIONS: False
325
+ NUM_WORKERS: 0
326
+ LOAD_PROPOSALS: False
327
+ SAMPLER_TRAIN: "TrainingSampler"
328
+ ASPECT_RATIO_GROUPING: False
329
+ TEST:
330
+ BATCH_SIZE_TOTAL: 8
331
+
332
+ DAVIS:
333
+ INPUT:
334
+ MIN_SIZE_TEST: 800
335
+ MAX_SIZE_TEST: 1333
336
+ DATALOADER:
337
+ FILTER_EMPTY_ANNOTATIONS: False
338
+ NUM_WORKERS: 0
339
+ LOAD_PROPOSALS: False
340
+ SAMPLER_TRAIN: "TrainingSampler"
341
+ ASPECT_RATIO_GROUPING: False
342
+ TEST:
343
+ BATCH_SIZE_TOTAL: 8
344
+
345
+ VOS:
346
+ INPUT:
347
+ MIN_SIZE_TEST: 800
348
+ MAX_SIZE_TEST: 1333
349
+ DATALOADER:
350
+ FILTER_EMPTY_ANNOTATIONS: False
351
+ NUM_WORKERS: 0
352
+ LOAD_PROPOSALS: False
353
+ SAMPLER_TRAIN: "TrainingSampler"
354
+ ASPECT_RATIO_GROUPING: False
355
+ TEST:
356
+ BATCH_SIZE_TOTAL: 1
357
+
358
+ REF:
359
+ INPUT:
360
+ PIXEL_MEAN: [123.675, 116.280, 103.530]
361
+ PIXEL_STD: [58.395, 57.120, 57.375]
362
+ MIN_SIZE_TEST: 512
363
+ MAX_SIZE_TEST: 1024
364
+ FORMAT: "RGB"
365
+ SPATIAL: False
366
+ DATALOADER:
367
+ FILTER_EMPTY_ANNOTATIONS: False
368
+ NUM_WORKERS: 4
369
+ LOAD_PROPOSALS: False
370
+ SAMPLER_TRAIN: "TrainingSampler"
371
+ ASPECT_RATIO_GROUPING: False
372
+ TEST:
373
+ BATCH_SIZE_TOTAL: 8
374
+
375
+ # Detectron2 training config for optimizer and lr scheduler
376
+ SOLVER:
377
+ BASE_LR: 0.0001
378
+ STEPS: [0.88889, 0.96296]
379
+ MAX_ITER: 1
380
+ GAMMA: 0.1
381
+ WARMUP_FACTOR: 1.0
382
+ WARMUP_ITERS: 10
383
+ WARMUP_METHOD: "linear"
384
+ WEIGHT_DECAY: 0.05
385
+ OPTIMIZER: "ADAMW"
386
+ LR_SCHEDULER_NAME: "WarmupMultiStepLR"
387
+ LR_MULTIPLIER:
388
+ backbone: 0.1
389
+ lang_encoder: 0.1
390
+ FIX_PARAM:
391
+ backbone: True
392
+ lang_encoder: True
393
+ pixel_decoder: True
394
+ WEIGHT_DECAY_NORM: 0.0
395
+ WEIGHT_DECAY_EMBED: 0.0
396
+ CLIP_GRADIENTS:
397
+ ENABLED: True
398
+ CLIP_TYPE: "full_model"
399
+ CLIP_VALUE: 5.0 # 0.01
400
+ NORM_TYPE: 2.0
401
+ MAX_NUM_EPOCHS: 50
configs/seem/focalt_unicl_lang_demo.yaml ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # X-Decoder -- Generalized Decoding for Pixel, Image, and Language
3
+ # Copyright (c) 2022 Microsoft
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # Written by Xueyan Zou ([email protected])
6
+ # --------------------------------------------------------
7
+
8
+ # Define Test/Trainer/Saving
9
+ PIPELINE: XDecoderPipeline
10
+ TRAINER: xdecoder
11
+ SAVE_DIR: '../../data/output/test'
12
+ base_path: "./"
13
+
14
+ # Resume Logistic
15
+ RESUME: false
16
+ WEIGHT: false
17
+ RESUME_FROM: ''
18
+ EVAL_AT_START: false
19
+
20
+ # Logging and Debug
21
+ WANDB: False
22
+ LOG_EVERY: 100
23
+ FIND_UNUSED_PARAMETERS: false
24
+
25
+ # Speed up training
26
+ FP16: false
27
+ PORT: '36873'
28
+
29
+ # misc
30
+ LOADER:
31
+ JOINT: False
32
+ KEY_DATASET: 'coco'
33
+
34
+ ##################
35
+ # Task settings
36
+ ##################
37
+ VERBOSE: true
38
+ MODEL:
39
+ NAME: seem_model_demo
40
+ HEAD: xdecoder_head
41
+ DIM_PROJ: 512
42
+ TEXT:
43
+ ARCH: vlpencoder
44
+ NAME: transformer
45
+ TOKENIZER: clip
46
+ CONTEXT_LENGTH: 77 # 77
47
+ WIDTH: 512
48
+ HEADS: 8
49
+ LAYERS: 12 # 6
50
+ AUTOGRESSIVE: True
51
+ BACKBONE:
52
+ NAME: focal_dw
53
+ PRETRAINED: ''
54
+ LOAD_PRETRAINED: false
55
+ FOCAL:
56
+ PRETRAIN_IMG_SIZE: 224
57
+ PATCH_SIZE: 4
58
+ EMBED_DIM: 96
59
+ DEPTHS: [2, 2, 6, 2]
60
+ FOCAL_LEVELS: [3, 3, 3, 3]
61
+ FOCAL_WINDOWS: [3, 3, 3, 3]
62
+ DROP_PATH_RATE: 0.3
63
+ MLP_RATIO: 4.0
64
+ DROP_RATE: 0.0
65
+ PATCH_NORM: True
66
+ USE_CONV_EMBED: True
67
+ SCALING_MODULATOR: True
68
+ USE_CHECKPOINT: False
69
+ USE_POSTLN: true
70
+ USE_POSTLN_IN_MODULATION: false
71
+ USE_LAYERSCALE: True
72
+ OUT_FEATURES: ["res2", "res3", "res4", "res5"]
73
+ OUT_INDICES: [0, 1, 2, 3]
74
+ ENCODER:
75
+ NAME: transformer_encoder_fpn
76
+ IGNORE_VALUE: 255
77
+ NUM_CLASSES: 133
78
+ LOSS_WEIGHT: 1.0
79
+ CONVS_DIM: 512
80
+ MASK_DIM: 512
81
+ NORM: "GN"
82
+ IN_FEATURES: ["res2", "res3", "res4", "res5"]
83
+ DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES: ["res3", "res4", "res5"]
84
+ COMMON_STRIDE: 4
85
+ TRANSFORMER_ENC_LAYERS: 6
86
+ DECODER:
87
+ NAME: seem_demo
88
+ TRANSFORMER_IN_FEATURE: "multi_scale_pixel_decoder"
89
+ MASK:
90
+ ENABLED: True
91
+ DETECTION: False
92
+ SPATIAL:
93
+ ENABLED: True
94
+ MAX_ITER: 1
95
+ GROUNDING:
96
+ ENABLED: False
97
+ MAX_LEN: 5
98
+ TEXT_WEIGHT: 2.0
99
+ CLASS_WEIGHT: 0.5
100
+ VISUAL:
101
+ ENABLED: False
102
+ AUDIO:
103
+ ENABLED: False
104
+ RETRIEVAL:
105
+ ENABLED: False
106
+ LVIS:
107
+ ENABLED: True
108
+ THRES: 0.7
109
+ OPENIMAGE:
110
+ ENABLED: False
111
+ NEGATIVE_SAMPLES: 5
112
+ GROUNDING:
113
+ ENABLED: False
114
+ MAX_LEN: 5
115
+ CAPTION:
116
+ ENABLED: False
117
+ PHRASE_PROB: 0.5
118
+ SIM_THRES: 0.95
119
+ DEEP_SUPERVISION: True
120
+ NO_OBJECT_WEIGHT: 0.1
121
+ GCLASS_WEIGHT: 0.4
122
+ GMASK_WEIGHT: 1.0
123
+ GDICE_WEIGHT: 1.0
124
+ SCLASS_WEIGHT: 0.4
125
+ SMASK_WEIGHT: 1.0
126
+ SDICE_WEIGHT: 1.0
127
+ OCLASS_WEIGHT: 0.4
128
+ OMASK_WEIGHT: 1.0
129
+ ODICE_WEIGHT: 1.0
130
+ CLASS_WEIGHT: 2.0
131
+ MASK_WEIGHT: 5.0
132
+ DICE_WEIGHT: 5.0
133
+ BBOX_WEIGHT: 5.0
134
+ GIOU_WEIGHT: 2.0
135
+ CAPTION_WEIGHT: 2.0
136
+ COST_SPATIAL:
137
+ CLASS_WEIGHT: 5.0
138
+ MASK_WEIGHT: 2.0
139
+ DICE_WEIGHT: 2.0
140
+ HIDDEN_DIM: 512
141
+ NUM_OBJECT_QUERIES: 101
142
+ NHEADS: 8
143
+ DROPOUT: 0.0
144
+ DIM_FEEDFORWARD: 2048
145
+ MAX_SPATIAL_LEN: [512, 512, 512, 512]
146
+ # ENC_LAYERS: 0
147
+ PRE_NORM: False
148
+ ENFORCE_INPUT_PROJ: False
149
+ SIZE_DIVISIBILITY: 32
150
+ TRAIN_NUM_POINTS: 12544
151
+ OVERSAMPLE_RATIO: 3.0
152
+ IMPORTANCE_SAMPLE_RATIO: 0.75
153
+ DEC_LAYERS: 10 # 9 decoder layers, add one for the loss on learnable query
154
+ TOP_GROUNDING_LAYERS: 10
155
+ TOP_CAPTION_LAYERS: 10
156
+ TOP_SPATIAL_LAYERS: 10
157
+ TOP_OPENIMAGE_LAYERS: 10
158
+ TEST:
159
+ SEMANTIC_ON: True
160
+ INSTANCE_ON: True
161
+ PANOPTIC_ON: True
162
+ OVERLAP_THRESHOLD: 0.8
163
+ OBJECT_MASK_THRESHOLD: 0.4
164
+ SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE: false
165
+ DETECTIONS_PER_IMAGE: 100
166
+
167
+ # Multi-modal Architecture, order matters
168
+ ATTENTION_ARCH:
169
+ VARIABLE:
170
+ queries: ['object']
171
+ tokens: ['grounding', 'spatial', 'visual', 'audio']
172
+ SELF_ATTENTION:
173
+ queries:
174
+ object: ['queries_object', 'tokens_grounding', 'tokens_spatial', 'tokens_visual', 'tokens_audio']
175
+ tokens:
176
+ grounding: ['queries_object', 'tokens_grounding']
177
+ spatial: ['tokens_spatial']
178
+ visual: ['tokens_visual']
179
+ audio: ['queries_object', 'tokens_audio']
180
+ CROSS_ATTENTION:
181
+ queries:
182
+ object: True
183
+ tokens:
184
+ grounding: False
185
+ spatial: False
186
+ visual: False
187
+ audio: False
188
+ MASKING: ['tokens_spatial', 'tokens_grounding', 'tokens_visual', 'tokens_audio']
189
+ DUPLICATION:
190
+ queries:
191
+ grounding: 'queries_object'
192
+ spatial: 'queries_object'
193
+ SPATIAL_MEMORIES: 32
194
+
195
+ INPUT:
196
+ PIXEL_MEAN: [123.675, 116.280, 103.530]
197
+ PIXEL_STD: [58.395, 57.120, 57.375]
configs/seem/focalt_unicl_lang_v0.yaml ADDED
@@ -0,0 +1,401 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # X-Decoder -- Generalized Decoding for Pixel, Image, and Language
3
+ # Copyright (c) 2022 Microsoft
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # Written by Xueyan Zou ([email protected])
6
+ # --------------------------------------------------------
7
+
8
+ # Define Test/Trainer/Saving
9
+ PIPELINE: XDecoderPipeline
10
+ TRAINER: xdecoder
11
+ SAVE_DIR: '../../data/output/test'
12
+ base_path: "./"
13
+
14
+ # Resume Logistic
15
+ RESUME: false
16
+ WEIGHT: false
17
+ RESUME_FROM: ''
18
+ EVAL_AT_START: false
19
+
20
+ # Logging and Debug
21
+ WANDB: False
22
+ LOG_EVERY: 100
23
+ FIND_UNUSED_PARAMETERS: false
24
+
25
+ # Speed up training
26
+ FP16: false
27
+ PORT: '36873'
28
+
29
+ # misc
30
+ LOADER:
31
+ JOINT: False
32
+ KEY_DATASET: 'coco'
33
+
34
+ ##################
35
+ # Task settings
36
+ ##################
37
+ VERBOSE: true
38
+ MODEL:
39
+ NAME: seem_model_v0
40
+ HEAD: xdecoder_head
41
+ MASK_ON: false
42
+ KEYPOINT_ON: false
43
+ LOAD_PROPOSALS: false
44
+ DIM_PROJ: 512
45
+ TEXT:
46
+ ARCH: vlpencoder
47
+ NAME: transformer
48
+ TOKENIZER: clip
49
+ CONTEXT_LENGTH: 77 # 77
50
+ WIDTH: 512
51
+ HEADS: 8
52
+ LAYERS: 12 # 6
53
+ AUTOGRESSIVE: True
54
+ BACKBONE:
55
+ NAME: focal_dw
56
+ PRETRAINED: ''
57
+ LOAD_PRETRAINED: false
58
+ FOCAL:
59
+ PRETRAIN_IMG_SIZE: 224
60
+ PATCH_SIZE: 4
61
+ EMBED_DIM: 96
62
+ DEPTHS: [2, 2, 6, 2]
63
+ FOCAL_LEVELS: [3, 3, 3, 3]
64
+ FOCAL_WINDOWS: [3, 3, 3, 3]
65
+ DROP_PATH_RATE: 0.3
66
+ MLP_RATIO: 4.0
67
+ DROP_RATE: 0.0
68
+ PATCH_NORM: True
69
+ USE_CONV_EMBED: True
70
+ SCALING_MODULATOR: True
71
+ USE_CHECKPOINT: False
72
+ USE_POSTLN: true
73
+ USE_POSTLN_IN_MODULATION: false
74
+ USE_LAYERSCALE: True
75
+ OUT_FEATURES: ["res2", "res3", "res4", "res5"]
76
+ OUT_INDICES: [0, 1, 2, 3]
77
+ ENCODER:
78
+ NAME: transformer_encoder_fpn
79
+ IGNORE_VALUE: 255
80
+ NUM_CLASSES: 133
81
+ LOSS_WEIGHT: 1.0
82
+ CONVS_DIM: 512
83
+ MASK_DIM: 512
84
+ NORM: "GN"
85
+ IN_FEATURES: ["res2", "res3", "res4", "res5"]
86
+ DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES: ["res3", "res4", "res5"]
87
+ COMMON_STRIDE: 4
88
+ TRANSFORMER_ENC_LAYERS: 6
89
+ DECODER:
90
+ NAME: seem_v0
91
+ TRANSFORMER_IN_FEATURE: "multi_scale_pixel_decoder"
92
+ MASK:
93
+ ENABLED: True
94
+ DETECTION: False
95
+ SPATIAL:
96
+ ENABLED: True
97
+ MAX_ITER: 1
98
+ GROUNDING:
99
+ ENABLED: True
100
+ MAX_LEN: 5
101
+ TEXT_WEIGHT: 2.0
102
+ CLASS_WEIGHT: 0.5
103
+ RETRIEVAL:
104
+ ENABLED: False
105
+ LVIS:
106
+ ENABLED: True
107
+ THRES: 0.7
108
+ OPENIMAGE:
109
+ ENABLED: False
110
+ NEGATIVE_SAMPLES: 5
111
+ GROUNDING:
112
+ ENABLED: False
113
+ MAX_LEN: 5
114
+ CAPTION:
115
+ ENABLED: False
116
+ PHRASE_PROB: 0.5
117
+ SIM_THRES: 0.95
118
+ DEEP_SUPERVISION: True
119
+ NO_OBJECT_WEIGHT: 0.1
120
+ GCLASS_WEIGHT: 0.4
121
+ GMASK_WEIGHT: 1.0
122
+ GDICE_WEIGHT: 1.0
123
+ SCLASS_WEIGHT: 0.4
124
+ SMASK_WEIGHT: 1.0
125
+ SDICE_WEIGHT: 1.0
126
+ OCLASS_WEIGHT: 0.4
127
+ OMASK_WEIGHT: 1.0
128
+ ODICE_WEIGHT: 1.0
129
+ CLASS_WEIGHT: 2.0
130
+ MASK_WEIGHT: 5.0
131
+ DICE_WEIGHT: 5.0
132
+ BBOX_WEIGHT: 5.0
133
+ GIOU_WEIGHT: 2.0
134
+ CAPTION_WEIGHT: 2.0
135
+ COST_SPATIAL:
136
+ CLASS_WEIGHT: 5.0
137
+ MASK_WEIGHT: 2.0
138
+ DICE_WEIGHT: 2.0
139
+ HIDDEN_DIM: 512
140
+ NUM_OBJECT_QUERIES: 101
141
+ NHEADS: 8
142
+ DROPOUT: 0.0
143
+ DIM_FEEDFORWARD: 2048
144
+ MAX_SPATIAL_LEN: [512, 512, 512, 512]
145
+ # ENC_LAYERS: 0
146
+ PRE_NORM: False
147
+ ENFORCE_INPUT_PROJ: False
148
+ SIZE_DIVISIBILITY: 32
149
+ TRAIN_NUM_POINTS: 12544
150
+ OVERSAMPLE_RATIO: 3.0
151
+ IMPORTANCE_SAMPLE_RATIO: 0.75
152
+ DEC_LAYERS: 10 # 9 decoder layers, add one for the loss on learnable query
153
+ TOP_GROUNDING_LAYERS: 10
154
+ TOP_CAPTION_LAYERS: 10
155
+ TOP_SPATIAL_LAYERS: 10
156
+ TOP_OPENIMAGE_LAYERS: 10
157
+ TEST:
158
+ SEMANTIC_ON: True
159
+ INSTANCE_ON: True
160
+ PANOPTIC_ON: True
161
+ OVERLAP_THRESHOLD: 0.8
162
+ OBJECT_MASK_THRESHOLD: 0.8
163
+ SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE: false
164
+
165
+ # Spatial sampler
166
+ STROKE_SAMPLER:
167
+ MAX_CANDIDATE: 1
168
+ CANDIDATE_PROBS: [0.25, 0.25, 0.25, 0.25] # for training only
169
+ CANDIDATE_NAMES: ["Point", "Polygon", "Scribble", "Circle"]
170
+ DILATION: 3
171
+ CIRCLE:
172
+ NUM_STROKES: 5
173
+ STROKE_PRESET: ['object_like', 'object_like_middle', 'object_like_small']
174
+ STROKE_PROB: [0.33, 0.33, 0.33]
175
+ SCRIBBLE:
176
+ NUM_STROKES: 5
177
+ STROKE_PRESET: ['rand_curve', 'rand_curve_small']
178
+ STROKE_PROB: [0.5, 0.5]
179
+ POINT:
180
+ NUM_POINTS: 20
181
+ POLYGON:
182
+ MAX_POINTS: 9
183
+ EVAL:
184
+ MODE: 'best' # best/random/best_random
185
+ NEGATIVE: False
186
+ MAX_ITER: 20
187
+ IOU_ITER: 1
188
+ GROUNDING: False
189
+
190
+ # Multi-modal Architecture, order matters
191
+ ATTENTION_ARCH:
192
+ VARIABLE:
193
+ queries: ['object', 'grounding', 'spatial']
194
+ tokens: ['grounding', 'spatial']
195
+ memories: ['spatial']
196
+ SELF_ATTENTION:
197
+ queries:
198
+ object: ['queries_object']
199
+ grounding: ['queries_grounding', 'tokens_grounding']
200
+ spatial: ['queries_spatial', 'tokens_spatial', 'memories_spatial']
201
+ tokens:
202
+ grounding: ['queries_grounding', 'tokens_grounding']
203
+ spatial: ['tokens_spatial']
204
+ memories:
205
+ spatial: ['memories_spatial']
206
+ CROSS_ATTENTION:
207
+ queries:
208
+ object: True
209
+ grounding: True
210
+ spatial: True
211
+ memories:
212
+ spatial: True
213
+ tokens:
214
+ grounding: False
215
+ spatial: False
216
+ MASKING: ['tokens_spatial', 'tokens_grounding']
217
+ DUPLICATION:
218
+ queries:
219
+ grounding: 'queries_object'
220
+ spatial: 'queries_object'
221
+ SPATIAL_MEMORIES: 32
222
+ QUERY_NUMBER: 3
223
+
224
+ DATASETS:
225
+ TRAIN: ["coco_2017_train_panoptic_filtrefgumdval_with_sem_seg_caption_grounding_lvis",]
226
+ # TRAIN: ["coco_2017_train_panoptic_with_sem_seg_caption_grounding",]
227
+ TEST: ["coco_2017_val_panoptic_with_sem_seg", "pascalvoc_val_Point", "refcocog_val_umd"] # to evaluate instance and semantic performance as well
228
+ # TEST: ["pascalvoc_val_Point"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
229
+ # TEST: ["cocomini_val_Point", "cocomini_val_Circle", "cocomini_val_Scribble", "cocomini_val_Polygon", "cocomini_val_Box"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
230
+ # TEST: ["ade600_val_Point", "ade600_val_Circle", "ade600_val_Scribble", "ade600_val_Polygon", "ade600_val_Box"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
231
+ # TEST: ["openimage600_val_Point", "openimage600_val_Circle", "openimage600_val_Scribble", "openimage600_val_Polygon", "openimage600_val_Box"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
232
+ CLASS_CONCAT: false
233
+ SIZE_DIVISIBILITY: 32
234
+ PROPOSAL_FILES_TRAIN: []
235
+
236
+ INPUT:
237
+ PIXEL_MEAN: [123.675, 116.280, 103.530]
238
+ PIXEL_STD: [58.395, 57.120, 57.375]
239
+
240
+ TRAIN:
241
+ ASPECT_RATIO_GROUPING: true
242
+ BATCH_SIZE_TOTAL: 4
243
+ BATCH_SIZE_PER_GPU: 4
244
+ SHUFFLE: true
245
+
246
+ TEST:
247
+ DETECTIONS_PER_IMAGE: 100
248
+ NAME: coco_eval
249
+ IOU_TYPE: ['bbox', 'segm']
250
+ USE_MULTISCALE: false
251
+ BATCH_SIZE_TOTAL: 8
252
+ MODEL_FILE: ''
253
+ AUG:
254
+ ENABLED: False
255
+
256
+ DATALOADER:
257
+ FILTER_EMPTY_ANNOTATIONS: False
258
+ NUM_WORKERS: 8
259
+ LOAD_PROPOSALS: False
260
+ SAMPLER_TRAIN: "TrainingSampler"
261
+ ASPECT_RATIO_GROUPING: True
262
+
263
+ COCO:
264
+ INPUT:
265
+ MIN_SIZE_TRAIN: 800
266
+ MAX_SIZE_TRAIN: 1333
267
+ MIN_SIZE_TRAIN_SAMPLING: 'choice'
268
+ MIN_SIZE_TEST: 800
269
+ MAX_SIZE_TEST: 1333
270
+ IMAGE_SIZE: 1024
271
+ MIN_SCALE: 0.1
272
+ MAX_SCALE: 2.0
273
+ DATASET_MAPPER_NAME: "coco_interactive"
274
+ IGNORE_VALUE: 255
275
+ COLOR_AUG_SSD: False
276
+ SIZE_DIVISIBILITY: 32
277
+ RANDOM_FLIP: "horizontal"
278
+ MASK_FORMAT: "polygon"
279
+ FORMAT: "RGB"
280
+ CROP:
281
+ ENABLED: True
282
+ DATASET:
283
+ DATASET: 'coco'
284
+
285
+ # Validation dataset
286
+ ADE20K:
287
+ INPUT:
288
+ MIN_SIZE_TRAIN: 640
289
+ MIN_SIZE_TRAIN_SAMPLING: "choice"
290
+ MIN_SIZE_TEST: 640
291
+ MAX_SIZE_TRAIN: 2560
292
+ MAX_SIZE_TEST: 2560
293
+ MASK_FORMAT: "polygon"
294
+ CROP:
295
+ ENABLED: True
296
+ TYPE: "absolute"
297
+ SIZE: (640, 640)
298
+ SINGLE_CATEGORY_MAX_AREA: 1.0
299
+ COLOR_AUG_SSD: True
300
+ SIZE_DIVISIBILITY: 640 # used in dataset mapper
301
+ DATASET_MAPPER_NAME: "mask_former_panoptic"
302
+ FORMAT: "RGB"
303
+ DATASET:
304
+ DATASET: 'ade'
305
+
306
+ SBD:
307
+ INPUT:
308
+ MIN_SIZE_TEST: 800
309
+ MAX_SIZE_TEST: 1333
310
+ DATALOADER:
311
+ FILTER_EMPTY_ANNOTATIONS: False
312
+ NUM_WORKERS: 0
313
+ LOAD_PROPOSALS: False
314
+ SAMPLER_TRAIN: "TrainingSampler"
315
+ ASPECT_RATIO_GROUPING: False
316
+ TEST:
317
+ BATCH_SIZE_TOTAL: 1
318
+
319
+ VOC:
320
+ INPUT:
321
+ MIN_SIZE_TEST: 800
322
+ MAX_SIZE_TEST: 1333
323
+ DATALOADER:
324
+ FILTER_EMPTY_ANNOTATIONS: False
325
+ NUM_WORKERS: 0
326
+ LOAD_PROPOSALS: False
327
+ SAMPLER_TRAIN: "TrainingSampler"
328
+ ASPECT_RATIO_GROUPING: False
329
+ TEST:
330
+ BATCH_SIZE_TOTAL: 8
331
+
332
+ DAVIS:
333
+ INPUT:
334
+ MIN_SIZE_TEST: 800
335
+ MAX_SIZE_TEST: 1333
336
+ DATALOADER:
337
+ FILTER_EMPTY_ANNOTATIONS: False
338
+ NUM_WORKERS: 0
339
+ LOAD_PROPOSALS: False
340
+ SAMPLER_TRAIN: "TrainingSampler"
341
+ ASPECT_RATIO_GROUPING: False
342
+ TEST:
343
+ BATCH_SIZE_TOTAL: 8
344
+
345
+ VOS:
346
+ INPUT:
347
+ MIN_SIZE_TEST: 800
348
+ MAX_SIZE_TEST: 1333
349
+ DATALOADER:
350
+ FILTER_EMPTY_ANNOTATIONS: False
351
+ NUM_WORKERS: 0
352
+ LOAD_PROPOSALS: False
353
+ SAMPLER_TRAIN: "TrainingSampler"
354
+ ASPECT_RATIO_GROUPING: False
355
+ TEST:
356
+ BATCH_SIZE_TOTAL: 1
357
+
358
+ REF:
359
+ INPUT:
360
+ PIXEL_MEAN: [123.675, 116.280, 103.530]
361
+ PIXEL_STD: [58.395, 57.120, 57.375]
362
+ MIN_SIZE_TEST: 512
363
+ MAX_SIZE_TEST: 1024
364
+ FORMAT: "RGB"
365
+ SPATIAL: False
366
+ DATALOADER:
367
+ FILTER_EMPTY_ANNOTATIONS: False
368
+ NUM_WORKERS: 4
369
+ LOAD_PROPOSALS: False
370
+ SAMPLER_TRAIN: "TrainingSampler"
371
+ ASPECT_RATIO_GROUPING: False
372
+ TEST:
373
+ BATCH_SIZE_TOTAL: 8
374
+
375
+ # Detectron2 training config for optimizer and lr scheduler
376
+ SOLVER:
377
+ BASE_LR: 0.0001
378
+ STEPS: [0.88889, 0.96296]
379
+ MAX_ITER: 1
380
+ GAMMA: 0.1
381
+ WARMUP_FACTOR: 1.0
382
+ WARMUP_ITERS: 10
383
+ WARMUP_METHOD: "linear"
384
+ WEIGHT_DECAY: 0.05
385
+ OPTIMIZER: "ADAMW"
386
+ LR_SCHEDULER_NAME: "WarmupMultiStepLR"
387
+ LR_MULTIPLIER:
388
+ backbone: 0.1
389
+ lang_encoder: 0.1
390
+ FIX_PARAM:
391
+ backbone: True
392
+ lang_encoder: True
393
+ pixel_decoder: True
394
+ WEIGHT_DECAY_NORM: 0.0
395
+ WEIGHT_DECAY_EMBED: 0.0
396
+ CLIP_GRADIENTS:
397
+ ENABLED: True
398
+ CLIP_TYPE: "full_model"
399
+ CLIP_VALUE: 5.0 # 0.01
400
+ NORM_TYPE: 2.0
401
+ MAX_NUM_EPOCHS: 50
configs/seem/focalt_unicl_lang_v1.yaml ADDED
@@ -0,0 +1,401 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # X-Decoder -- Generalized Decoding for Pixel, Image, and Language
3
+ # Copyright (c) 2022 Microsoft
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # Written by Xueyan Zou ([email protected])
6
+ # --------------------------------------------------------
7
+
8
+ # Define Test/Trainer/Saving
9
+ PIPELINE: XDecoderPipeline
10
+ TRAINER: xdecoder
11
+ SAVE_DIR: '../../data/output/test'
12
+ base_path: "./"
13
+
14
+ # Resume Logistic
15
+ RESUME: false
16
+ WEIGHT: false
17
+ RESUME_FROM: ''
18
+ EVAL_AT_START: false
19
+
20
+ # Logging and Debug
21
+ WANDB: False
22
+ LOG_EVERY: 100
23
+ FIND_UNUSED_PARAMETERS: false
24
+
25
+ # Speed up training
26
+ FP16: false
27
+ PORT: '36873'
28
+
29
+ # misc
30
+ LOADER:
31
+ JOINT: False
32
+ KEY_DATASET: 'coco'
33
+
34
+ ##################
35
+ # Task settings
36
+ ##################
37
+ VERBOSE: true
38
+ MODEL:
39
+ NAME: seem_model_v1
40
+ HEAD: xdecoder_head
41
+ MASK_ON: false
42
+ KEYPOINT_ON: false
43
+ LOAD_PROPOSALS: false
44
+ DIM_PROJ: 512
45
+ TEXT:
46
+ ARCH: vlpencoder
47
+ NAME: transformer
48
+ TOKENIZER: clip
49
+ CONTEXT_LENGTH: 77 # 77
50
+ WIDTH: 512
51
+ HEADS: 8
52
+ LAYERS: 12 # 6
53
+ AUTOGRESSIVE: True
54
+ BACKBONE:
55
+ NAME: focal_dw
56
+ PRETRAINED: ''
57
+ LOAD_PRETRAINED: false
58
+ FOCAL:
59
+ PRETRAIN_IMG_SIZE: 224
60
+ PATCH_SIZE: 4
61
+ EMBED_DIM: 96
62
+ DEPTHS: [2, 2, 6, 2]
63
+ FOCAL_LEVELS: [3, 3, 3, 3]
64
+ FOCAL_WINDOWS: [3, 3, 3, 3]
65
+ DROP_PATH_RATE: 0.3
66
+ MLP_RATIO: 4.0
67
+ DROP_RATE: 0.0
68
+ PATCH_NORM: True
69
+ USE_CONV_EMBED: True
70
+ SCALING_MODULATOR: True
71
+ USE_CHECKPOINT: False
72
+ USE_POSTLN: true
73
+ USE_POSTLN_IN_MODULATION: false
74
+ USE_LAYERSCALE: True
75
+ OUT_FEATURES: ["res2", "res3", "res4", "res5"]
76
+ OUT_INDICES: [0, 1, 2, 3]
77
+ ENCODER:
78
+ NAME: transformer_encoder_fpn
79
+ IGNORE_VALUE: 255
80
+ NUM_CLASSES: 133
81
+ LOSS_WEIGHT: 1.0
82
+ CONVS_DIM: 512
83
+ MASK_DIM: 512
84
+ NORM: "GN"
85
+ IN_FEATURES: ["res2", "res3", "res4", "res5"]
86
+ DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES: ["res3", "res4", "res5"]
87
+ COMMON_STRIDE: 4
88
+ TRANSFORMER_ENC_LAYERS: 6
89
+ DECODER:
90
+ NAME: seem_v1
91
+ TRANSFORMER_IN_FEATURE: "multi_scale_pixel_decoder"
92
+ MASK:
93
+ ENABLED: True
94
+ DETECTION: False
95
+ SPATIAL:
96
+ ENABLED: True
97
+ MAX_ITER: 1
98
+ GROUNDING:
99
+ ENABLED: True
100
+ MAX_LEN: 5
101
+ TEXT_WEIGHT: 2.0
102
+ CLASS_WEIGHT: 0.5
103
+ RETRIEVAL:
104
+ ENABLED: False
105
+ LVIS:
106
+ ENABLED: True
107
+ THRES: 0.7
108
+ OPENIMAGE:
109
+ ENABLED: False
110
+ NEGATIVE_SAMPLES: 5
111
+ GROUNDING:
112
+ ENABLED: False
113
+ MAX_LEN: 5
114
+ CAPTION:
115
+ ENABLED: False
116
+ PHRASE_PROB: 0.5
117
+ SIM_THRES: 0.95
118
+ DEEP_SUPERVISION: True
119
+ NO_OBJECT_WEIGHT: 0.1
120
+ GCLASS_WEIGHT: 0.4
121
+ GMASK_WEIGHT: 1.0
122
+ GDICE_WEIGHT: 1.0
123
+ SCLASS_WEIGHT: 0.4
124
+ SMASK_WEIGHT: 1.0
125
+ SDICE_WEIGHT: 1.0
126
+ OCLASS_WEIGHT: 0.4
127
+ OMASK_WEIGHT: 1.0
128
+ ODICE_WEIGHT: 1.0
129
+ CLASS_WEIGHT: 2.0
130
+ MASK_WEIGHT: 5.0
131
+ DICE_WEIGHT: 5.0
132
+ BBOX_WEIGHT: 5.0
133
+ GIOU_WEIGHT: 2.0
134
+ CAPTION_WEIGHT: 2.0
135
+ COST_SPATIAL:
136
+ CLASS_WEIGHT: 5.0
137
+ MASK_WEIGHT: 2.0
138
+ DICE_WEIGHT: 2.0
139
+ HIDDEN_DIM: 512
140
+ NUM_OBJECT_QUERIES: 101
141
+ NHEADS: 8
142
+ DROPOUT: 0.0
143
+ DIM_FEEDFORWARD: 2048
144
+ MAX_SPATIAL_LEN: [512, 512, 512, 512]
145
+ # ENC_LAYERS: 0
146
+ PRE_NORM: False
147
+ ENFORCE_INPUT_PROJ: False
148
+ SIZE_DIVISIBILITY: 32
149
+ TRAIN_NUM_POINTS: 12544
150
+ OVERSAMPLE_RATIO: 3.0
151
+ IMPORTANCE_SAMPLE_RATIO: 0.75
152
+ DEC_LAYERS: 10 # 9 decoder layers, add one for the loss on learnable query
153
+ TOP_GROUNDING_LAYERS: 10
154
+ TOP_CAPTION_LAYERS: 10
155
+ TOP_SPATIAL_LAYERS: 10
156
+ TOP_OPENIMAGE_LAYERS: 10
157
+ TEST:
158
+ SEMANTIC_ON: True
159
+ INSTANCE_ON: True
160
+ PANOPTIC_ON: True
161
+ OVERLAP_THRESHOLD: 0.8
162
+ OBJECT_MASK_THRESHOLD: 0.8
163
+ SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE: false
164
+
165
+ # Spatial sampler
166
+ STROKE_SAMPLER:
167
+ MAX_CANDIDATE: 1
168
+ CANDIDATE_PROBS: [0.25, 0.25, 0.25, 0.25] # for training only
169
+ CANDIDATE_NAMES: ["Point", "Polygon", "Scribble", "Circle"]
170
+ DILATION: 3
171
+ CIRCLE:
172
+ NUM_STROKES: 5
173
+ STROKE_PRESET: ['object_like', 'object_like_middle', 'object_like_small']
174
+ STROKE_PROB: [0.33, 0.33, 0.33]
175
+ SCRIBBLE:
176
+ NUM_STROKES: 5
177
+ STROKE_PRESET: ['rand_curve', 'rand_curve_small']
178
+ STROKE_PROB: [0.5, 0.5]
179
+ POINT:
180
+ NUM_POINTS: 20
181
+ POLYGON:
182
+ MAX_POINTS: 9
183
+ EVAL:
184
+ MODE: 'best' # best/random/best_random
185
+ NEGATIVE: False
186
+ MAX_ITER: 20
187
+ IOU_ITER: 1
188
+ GROUNDING: False
189
+
190
+ # Multi-modal Architecture, order matters
191
+ ATTENTION_ARCH:
192
+ VARIABLE:
193
+ queries: ['object', 'grounding', 'spatial']
194
+ tokens: ['grounding', 'spatial']
195
+ memories: ['spatial']
196
+ SELF_ATTENTION:
197
+ queries:
198
+ object: ['queries_object']
199
+ grounding: ['queries_grounding', 'tokens_grounding']
200
+ spatial: ['queries_spatial', 'tokens_spatial', 'memories_spatial']
201
+ tokens:
202
+ grounding: ['queries_grounding', 'tokens_grounding']
203
+ spatial: ['tokens_spatial']
204
+ memories:
205
+ spatial: ['memories_spatial']
206
+ CROSS_ATTENTION:
207
+ queries:
208
+ object: True
209
+ grounding: True
210
+ spatial: True
211
+ memories:
212
+ spatial: True
213
+ tokens:
214
+ grounding: False
215
+ spatial: False
216
+ MASKING: ['tokens_spatial', 'tokens_grounding']
217
+ DUPLICATION:
218
+ queries:
219
+ grounding: 'queries_object'
220
+ spatial: 'queries_object'
221
+ SPATIAL_MEMORIES: 32
222
+ QUERY_NUMBER: 3
223
+
224
+ DATASETS:
225
+ TRAIN: ["coco_2017_train_panoptic_filtrefgumdval_with_sem_seg_caption_grounding_lvis",]
226
+ # TRAIN: ["coco_2017_train_panoptic_with_sem_seg_caption_grounding",]
227
+ TEST: ["coco_2017_val_panoptic_with_sem_seg", "pascalvoc_val_Point", "refcocog_val_umd"] # to evaluate instance and semantic performance as well
228
+ # TEST: ["pascalvoc_val_Point"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
229
+ # TEST: ["cocomini_val_Point", "cocomini_val_Circle", "cocomini_val_Scribble", "cocomini_val_Polygon", "cocomini_val_Box"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
230
+ # TEST: ["ade600_val_Point", "ade600_val_Circle", "ade600_val_Scribble", "ade600_val_Polygon", "ade600_val_Box"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
231
+ # TEST: ["openimage600_val_Point", "openimage600_val_Circle", "openimage600_val_Scribble", "openimage600_val_Polygon", "openimage600_val_Box"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
232
+ CLASS_CONCAT: false
233
+ SIZE_DIVISIBILITY: 32
234
+ PROPOSAL_FILES_TRAIN: []
235
+
236
+ INPUT:
237
+ PIXEL_MEAN: [123.675, 116.280, 103.530]
238
+ PIXEL_STD: [58.395, 57.120, 57.375]
239
+
240
+ TRAIN:
241
+ ASPECT_RATIO_GROUPING: true
242
+ BATCH_SIZE_TOTAL: 4
243
+ BATCH_SIZE_PER_GPU: 4
244
+ SHUFFLE: true
245
+
246
+ TEST:
247
+ DETECTIONS_PER_IMAGE: 100
248
+ NAME: coco_eval
249
+ IOU_TYPE: ['bbox', 'segm']
250
+ USE_MULTISCALE: false
251
+ BATCH_SIZE_TOTAL: 8
252
+ MODEL_FILE: ''
253
+ AUG:
254
+ ENABLED: False
255
+
256
+ DATALOADER:
257
+ FILTER_EMPTY_ANNOTATIONS: False
258
+ NUM_WORKERS: 8
259
+ LOAD_PROPOSALS: False
260
+ SAMPLER_TRAIN: "TrainingSampler"
261
+ ASPECT_RATIO_GROUPING: True
262
+
263
+ COCO:
264
+ INPUT:
265
+ MIN_SIZE_TRAIN: 800
266
+ MAX_SIZE_TRAIN: 1333
267
+ MIN_SIZE_TRAIN_SAMPLING: 'choice'
268
+ MIN_SIZE_TEST: 800
269
+ MAX_SIZE_TEST: 1333
270
+ IMAGE_SIZE: 1024
271
+ MIN_SCALE: 0.1
272
+ MAX_SCALE: 2.0
273
+ DATASET_MAPPER_NAME: "coco_interactive"
274
+ IGNORE_VALUE: 255
275
+ COLOR_AUG_SSD: False
276
+ SIZE_DIVISIBILITY: 32
277
+ RANDOM_FLIP: "horizontal"
278
+ MASK_FORMAT: "polygon"
279
+ FORMAT: "RGB"
280
+ CROP:
281
+ ENABLED: True
282
+ DATASET:
283
+ DATASET: 'coco'
284
+
285
+ # Validation dataset
286
+ ADE20K:
287
+ INPUT:
288
+ MIN_SIZE_TRAIN: 640
289
+ MIN_SIZE_TRAIN_SAMPLING: "choice"
290
+ MIN_SIZE_TEST: 640
291
+ MAX_SIZE_TRAIN: 2560
292
+ MAX_SIZE_TEST: 2560
293
+ MASK_FORMAT: "polygon"
294
+ CROP:
295
+ ENABLED: True
296
+ TYPE: "absolute"
297
+ SIZE: (640, 640)
298
+ SINGLE_CATEGORY_MAX_AREA: 1.0
299
+ COLOR_AUG_SSD: True
300
+ SIZE_DIVISIBILITY: 640 # used in dataset mapper
301
+ DATASET_MAPPER_NAME: "mask_former_panoptic"
302
+ FORMAT: "RGB"
303
+ DATASET:
304
+ DATASET: 'ade'
305
+
306
+ SBD:
307
+ INPUT:
308
+ MIN_SIZE_TEST: 800
309
+ MAX_SIZE_TEST: 1333
310
+ DATALOADER:
311
+ FILTER_EMPTY_ANNOTATIONS: False
312
+ NUM_WORKERS: 0
313
+ LOAD_PROPOSALS: False
314
+ SAMPLER_TRAIN: "TrainingSampler"
315
+ ASPECT_RATIO_GROUPING: False
316
+ TEST:
317
+ BATCH_SIZE_TOTAL: 1
318
+
319
+ VOC:
320
+ INPUT:
321
+ MIN_SIZE_TEST: 800
322
+ MAX_SIZE_TEST: 1333
323
+ DATALOADER:
324
+ FILTER_EMPTY_ANNOTATIONS: False
325
+ NUM_WORKERS: 0
326
+ LOAD_PROPOSALS: False
327
+ SAMPLER_TRAIN: "TrainingSampler"
328
+ ASPECT_RATIO_GROUPING: False
329
+ TEST:
330
+ BATCH_SIZE_TOTAL: 8
331
+
332
+ DAVIS:
333
+ INPUT:
334
+ MIN_SIZE_TEST: 800
335
+ MAX_SIZE_TEST: 1333
336
+ DATALOADER:
337
+ FILTER_EMPTY_ANNOTATIONS: False
338
+ NUM_WORKERS: 0
339
+ LOAD_PROPOSALS: False
340
+ SAMPLER_TRAIN: "TrainingSampler"
341
+ ASPECT_RATIO_GROUPING: False
342
+ TEST:
343
+ BATCH_SIZE_TOTAL: 8
344
+
345
+ VOS:
346
+ INPUT:
347
+ MIN_SIZE_TEST: 800
348
+ MAX_SIZE_TEST: 1333
349
+ DATALOADER:
350
+ FILTER_EMPTY_ANNOTATIONS: False
351
+ NUM_WORKERS: 0
352
+ LOAD_PROPOSALS: False
353
+ SAMPLER_TRAIN: "TrainingSampler"
354
+ ASPECT_RATIO_GROUPING: False
355
+ TEST:
356
+ BATCH_SIZE_TOTAL: 1
357
+
358
+ REF:
359
+ INPUT:
360
+ PIXEL_MEAN: [123.675, 116.280, 103.530]
361
+ PIXEL_STD: [58.395, 57.120, 57.375]
362
+ MIN_SIZE_TEST: 512
363
+ MAX_SIZE_TEST: 1024
364
+ FORMAT: "RGB"
365
+ SPATIAL: False
366
+ DATALOADER:
367
+ FILTER_EMPTY_ANNOTATIONS: False
368
+ NUM_WORKERS: 4
369
+ LOAD_PROPOSALS: False
370
+ SAMPLER_TRAIN: "TrainingSampler"
371
+ ASPECT_RATIO_GROUPING: False
372
+ TEST:
373
+ BATCH_SIZE_TOTAL: 8
374
+
375
+ # Detectron2 training config for optimizer and lr scheduler
376
+ SOLVER:
377
+ BASE_LR: 0.0001
378
+ STEPS: [0.88889, 0.96296]
379
+ MAX_ITER: 1
380
+ GAMMA: 0.1
381
+ WARMUP_FACTOR: 1.0
382
+ WARMUP_ITERS: 10
383
+ WARMUP_METHOD: "linear"
384
+ WEIGHT_DECAY: 0.05
385
+ OPTIMIZER: "ADAMW"
386
+ LR_SCHEDULER_NAME: "WarmupMultiStepLR"
387
+ LR_MULTIPLIER:
388
+ backbone: 0.1
389
+ lang_encoder: 0.1
390
+ FIX_PARAM:
391
+ backbone: True
392
+ lang_encoder: True
393
+ pixel_decoder: True
394
+ WEIGHT_DECAY_NORM: 0.0
395
+ WEIGHT_DECAY_EMBED: 0.0
396
+ CLIP_GRADIENTS:
397
+ ENABLED: True
398
+ CLIP_TYPE: "full_model"
399
+ CLIP_VALUE: 5.0 # 0.01
400
+ NORM_TYPE: 2.0
401
+ MAX_NUM_EPOCHS: 50
configs/seem/samvitb_unicl_lang_v1.yaml ADDED
@@ -0,0 +1,385 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # X-Decoder -- Generalized Decoding for Pixel, Image, and Language
3
+ # Copyright (c) 2022 Microsoft
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # Written by Xueyan Zou ([email protected])
6
+ # --------------------------------------------------------
7
+
8
+ # Define Test/Trainer/Saving
9
+ PIPELINE: XDecoderPipeline
10
+ TRAINER: xdecoder
11
+ SAVE_DIR: '../../data/output/test'
12
+ base_path: "./"
13
+
14
+ # Resume Logistic
15
+ RESUME: false
16
+ WEIGHT: false
17
+ RESUME_FROM: ''
18
+ EVAL_AT_START: false
19
+
20
+ # Logging and Debug
21
+ WANDB: False
22
+ LOG_EVERY: 100
23
+ FIND_UNUSED_PARAMETERS: false
24
+
25
+ # Speed up training
26
+ FP16: false
27
+ PORT: '36873'
28
+
29
+ # misc
30
+ LOADER:
31
+ JOINT: False
32
+ KEY_DATASET: 'coco'
33
+
34
+ ##################
35
+ # Task settings
36
+ ##################
37
+ VERBOSE: true
38
+ MODEL:
39
+ NAME: seem_model_v1
40
+ HEAD: xdecoder_head
41
+ MASK_ON: false
42
+ KEYPOINT_ON: false
43
+ LOAD_PROPOSALS: false
44
+ DIM_PROJ: 512
45
+ TEXT:
46
+ ARCH: vlpencoder
47
+ NAME: transformer
48
+ TOKENIZER: clip
49
+ CONTEXT_LENGTH: 77 # 77
50
+ WIDTH: 512
51
+ HEADS: 8
52
+ LAYERS: 12 # 6
53
+ AUTOGRESSIVE: True
54
+ BACKBONE:
55
+ NAME: vit
56
+ PRETRAINED: '/nobackup3/xueyan-data/grin_data/output/sam/sam_vit_b_01ec64.pth'
57
+ LOAD_PRETRAINED: true
58
+ VIT:
59
+ SIZE: "base"
60
+ OUT_FEATURES: ["res2", "res3", "res4", "res5"]
61
+ OUT_INDICES: [0, 1, 2, 3]
62
+ ENCODER:
63
+ NAME: transformer_encoder_deform
64
+ IGNORE_VALUE: 255
65
+ NUM_CLASSES: 133
66
+ LOSS_WEIGHT: 1.0
67
+ CONVS_DIM: 512
68
+ MASK_DIM: 512
69
+ NORM: "GN"
70
+ IN_FEATURES: ["res2", "res3", "res4", "res5"]
71
+ DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES: ["res3", "res4", "res5"]
72
+ COMMON_STRIDE: 4
73
+ TRANSFORMER_ENC_LAYERS: 6
74
+ DECODER:
75
+ NAME: seem_v1
76
+ TRANSFORMER_IN_FEATURE: "multi_scale_pixel_decoder"
77
+ MASK:
78
+ ENABLED: True
79
+ DETECTION: False
80
+ SPATIAL:
81
+ ENABLED: True
82
+ MAX_ITER: 1
83
+ GROUNDING:
84
+ ENABLED: True
85
+ MAX_LEN: 5
86
+ TEXT_WEIGHT: 2.0
87
+ CLASS_WEIGHT: 0.5
88
+ RETRIEVAL:
89
+ ENABLED: False
90
+ LVIS:
91
+ ENABLED: True
92
+ THRES: 0.7
93
+ OPENIMAGE:
94
+ ENABLED: False
95
+ NEGATIVE_SAMPLES: 5
96
+ GROUNDING:
97
+ ENABLED: False
98
+ MAX_LEN: 5
99
+ CAPTION:
100
+ ENABLED: False
101
+ PHRASE_PROB: 0.5
102
+ SIM_THRES: 0.95
103
+ DEEP_SUPERVISION: True
104
+ NO_OBJECT_WEIGHT: 0.1
105
+ GCLASS_WEIGHT: 0.4
106
+ GMASK_WEIGHT: 1.0
107
+ GDICE_WEIGHT: 1.0
108
+ SCLASS_WEIGHT: 0.4
109
+ SMASK_WEIGHT: 1.0
110
+ SDICE_WEIGHT: 1.0
111
+ OCLASS_WEIGHT: 0.4
112
+ OMASK_WEIGHT: 1.0
113
+ ODICE_WEIGHT: 1.0
114
+ CLASS_WEIGHT: 2.0
115
+ MASK_WEIGHT: 5.0
116
+ DICE_WEIGHT: 5.0
117
+ BBOX_WEIGHT: 5.0
118
+ GIOU_WEIGHT: 2.0
119
+ CAPTION_WEIGHT: 2.0
120
+ COST_SPATIAL:
121
+ CLASS_WEIGHT: 5.0
122
+ MASK_WEIGHT: 2.0
123
+ DICE_WEIGHT: 2.0
124
+ HIDDEN_DIM: 512
125
+ NUM_OBJECT_QUERIES: 101
126
+ NHEADS: 8
127
+ DROPOUT: 0.0
128
+ DIM_FEEDFORWARD: 2048
129
+ MAX_SPATIAL_LEN: [512, 512, 512, 512]
130
+ # ENC_LAYERS: 0
131
+ PRE_NORM: False
132
+ ENFORCE_INPUT_PROJ: False
133
+ SIZE_DIVISIBILITY: 1024
134
+ TRAIN_NUM_POINTS: 12544
135
+ OVERSAMPLE_RATIO: 3.0
136
+ IMPORTANCE_SAMPLE_RATIO: 0.75
137
+ DEC_LAYERS: 10 # 9 decoder layers, add one for the loss on learnable query
138
+ TOP_GROUNDING_LAYERS: 10
139
+ TOP_CAPTION_LAYERS: 10
140
+ TOP_SPATIAL_LAYERS: 10
141
+ TOP_OPENIMAGE_LAYERS: 10
142
+ TEST:
143
+ SEMANTIC_ON: True
144
+ INSTANCE_ON: True
145
+ PANOPTIC_ON: True
146
+ OVERLAP_THRESHOLD: 0.8
147
+ OBJECT_MASK_THRESHOLD: 0.8
148
+ SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE: false
149
+
150
+ # Spatial sampler
151
+ STROKE_SAMPLER:
152
+ MAX_CANDIDATE: 1
153
+ CANDIDATE_PROBS: [0.25, 0.25, 0.25, 0.25] # for training only
154
+ CANDIDATE_NAMES: ["Point", "Polygon", "Scribble", "Circle"]
155
+ DILATION: 3
156
+ CIRCLE:
157
+ NUM_STROKES: 5
158
+ STROKE_PRESET: ['object_like', 'object_like_middle', 'object_like_small']
159
+ STROKE_PROB: [0.33, 0.33, 0.33]
160
+ SCRIBBLE:
161
+ NUM_STROKES: 5
162
+ STROKE_PRESET: ['rand_curve', 'rand_curve_small']
163
+ STROKE_PROB: [0.5, 0.5]
164
+ POINT:
165
+ NUM_POINTS: 20
166
+ POLYGON:
167
+ MAX_POINTS: 9
168
+ EVAL:
169
+ MODE: 'best' # best/random/best_random
170
+ NEGATIVE: False
171
+ MAX_ITER: 20
172
+ IOU_ITER: 1
173
+ GROUNDING: False
174
+
175
+ # Multi-modal Architecture, order matters
176
+ ATTENTION_ARCH:
177
+ VARIABLE:
178
+ queries: ['object', 'grounding', 'spatial']
179
+ tokens: ['grounding', 'spatial']
180
+ memories: ['spatial']
181
+ SELF_ATTENTION:
182
+ queries:
183
+ object: ['queries_object']
184
+ grounding: ['queries_grounding', 'tokens_grounding']
185
+ spatial: ['queries_spatial', 'tokens_spatial', 'memories_spatial']
186
+ tokens:
187
+ grounding: ['queries_grounding', 'tokens_grounding']
188
+ spatial: ['tokens_spatial']
189
+ memories:
190
+ spatial: ['memories_spatial']
191
+ CROSS_ATTENTION:
192
+ queries:
193
+ object: True
194
+ grounding: True
195
+ spatial: True
196
+ memories:
197
+ spatial: True
198
+ tokens:
199
+ grounding: False
200
+ spatial: False
201
+ MASKING: ['tokens_spatial', 'tokens_grounding']
202
+ DUPLICATION:
203
+ queries:
204
+ grounding: 'queries_object'
205
+ spatial: 'queries_object'
206
+ SPATIAL_MEMORIES: 32
207
+ QUERY_NUMBER: 3
208
+
209
+ DATASETS:
210
+ TRAIN: ["coco_2017_train_panoptic_filtrefgumdval_with_sem_seg_caption_grounding_lvis",]
211
+ TEST: ["coco_2017_val_panoptic_with_sem_seg", "pascalvoc_val_Point", "refcocog_val_umd"] # to evaluate instance and semantic performance as well
212
+ # TEST: ["pascalvoc_val_Point"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
213
+ # TEST: ["cocomini_val_Point", "cocomini_val_Circle", "cocomini_val_Scribble", "cocomini_val_Polygon", "cocomini_val_Box"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
214
+ # TEST: ["ade600_val_Point", "ade600_val_Circle", "ade600_val_Scribble", "ade600_val_Polygon", "ade600_val_Box"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
215
+ # TEST: ["openimage600_val_Point", "openimage600_val_Circle", "openimage600_val_Scribble", "openimage600_val_Polygon", "openimage600_val_Box"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
216
+ CLASS_CONCAT: false
217
+ SIZE_DIVISIBILITY: 1024
218
+ PROPOSAL_FILES_TRAIN: []
219
+
220
+ INPUT:
221
+ PIXEL_MEAN: [123.675, 116.280, 103.530]
222
+ PIXEL_STD: [58.395, 57.120, 57.375]
223
+
224
+ TRAIN:
225
+ ASPECT_RATIO_GROUPING: true
226
+ BATCH_SIZE_TOTAL: 4
227
+ BATCH_SIZE_PER_GPU: 4
228
+ SHUFFLE: true
229
+
230
+ TEST:
231
+ DETECTIONS_PER_IMAGE: 100
232
+ NAME: coco_eval
233
+ IOU_TYPE: ['bbox', 'segm']
234
+ USE_MULTISCALE: false
235
+ BATCH_SIZE_TOTAL: 8
236
+ MODEL_FILE: ''
237
+ AUG:
238
+ ENABLED: False
239
+
240
+ DATALOADER:
241
+ FILTER_EMPTY_ANNOTATIONS: False
242
+ NUM_WORKERS: 8
243
+ LOAD_PROPOSALS: False
244
+ SAMPLER_TRAIN: "TrainingSampler"
245
+ ASPECT_RATIO_GROUPING: True
246
+
247
+ COCO:
248
+ INPUT:
249
+ MIN_SIZE_TRAIN: 800
250
+ MAX_SIZE_TRAIN: 1333
251
+ MIN_SIZE_TRAIN_SAMPLING: 'choice'
252
+ MIN_SIZE_TEST: 1000
253
+ MAX_SIZE_TEST: 1024
254
+ IMAGE_SIZE: 1024
255
+ MIN_SCALE: 0.1
256
+ MAX_SCALE: 2.0
257
+ DATASET_MAPPER_NAME: "coco_interactive"
258
+ IGNORE_VALUE: 255
259
+ COLOR_AUG_SSD: False
260
+ SIZE_DIVISIBILITY: 1024
261
+ RANDOM_FLIP: "horizontal"
262
+ MASK_FORMAT: "polygon"
263
+ FORMAT: "RGB"
264
+ CROP:
265
+ ENABLED: True
266
+ DATASET:
267
+ DATASET: 'coco'
268
+
269
+ # Validation dataset
270
+ ADE20K:
271
+ INPUT:
272
+ MIN_SIZE_TRAIN: 640
273
+ MIN_SIZE_TRAIN_SAMPLING: "choice"
274
+ MIN_SIZE_TEST: 640
275
+ MAX_SIZE_TRAIN: 2560
276
+ MAX_SIZE_TEST: 2560
277
+ MASK_FORMAT: "polygon"
278
+ CROP:
279
+ ENABLED: True
280
+ TYPE: "absolute"
281
+ SIZE: (640, 640)
282
+ SINGLE_CATEGORY_MAX_AREA: 1.0
283
+ COLOR_AUG_SSD: True
284
+ SIZE_DIVISIBILITY: 640 # used in dataset mapper
285
+ DATASET_MAPPER_NAME: "mask_former_panoptic"
286
+ FORMAT: "RGB"
287
+ DATASET:
288
+ DATASET: 'ade'
289
+
290
+ SBD:
291
+ INPUT:
292
+ MIN_SIZE_TEST: 800
293
+ MAX_SIZE_TEST: 1333
294
+ DATALOADER:
295
+ FILTER_EMPTY_ANNOTATIONS: False
296
+ NUM_WORKERS: 0
297
+ LOAD_PROPOSALS: False
298
+ SAMPLER_TRAIN: "TrainingSampler"
299
+ ASPECT_RATIO_GROUPING: False
300
+ TEST:
301
+ BATCH_SIZE_TOTAL: 1
302
+
303
+ VOC:
304
+ INPUT:
305
+ MIN_SIZE_TEST: 1000
306
+ MAX_SIZE_TEST: 1024
307
+ DATALOADER:
308
+ FILTER_EMPTY_ANNOTATIONS: False
309
+ NUM_WORKERS: 0
310
+ LOAD_PROPOSALS: False
311
+ SAMPLER_TRAIN: "TrainingSampler"
312
+ ASPECT_RATIO_GROUPING: False
313
+ TEST:
314
+ BATCH_SIZE_TOTAL: 8
315
+
316
+ DAVIS:
317
+ INPUT:
318
+ MIN_SIZE_TEST: 1000
319
+ MAX_SIZE_TEST: 1024
320
+ DATALOADER:
321
+ FILTER_EMPTY_ANNOTATIONS: False
322
+ NUM_WORKERS: 0
323
+ LOAD_PROPOSALS: False
324
+ SAMPLER_TRAIN: "TrainingSampler"
325
+ ASPECT_RATIO_GROUPING: False
326
+ TEST:
327
+ BATCH_SIZE_TOTAL: 8
328
+
329
+ VOS:
330
+ INPUT:
331
+ MIN_SIZE_TEST: 800
332
+ MAX_SIZE_TEST: 1333
333
+ DATALOADER:
334
+ FILTER_EMPTY_ANNOTATIONS: False
335
+ NUM_WORKERS: 0
336
+ LOAD_PROPOSALS: False
337
+ SAMPLER_TRAIN: "TrainingSampler"
338
+ ASPECT_RATIO_GROUPING: False
339
+ TEST:
340
+ BATCH_SIZE_TOTAL: 1
341
+
342
+ REF:
343
+ INPUT:
344
+ PIXEL_MEAN: [123.675, 116.280, 103.530]
345
+ PIXEL_STD: [58.395, 57.120, 57.375]
346
+ MIN_SIZE_TEST: 1000
347
+ MAX_SIZE_TEST: 1024
348
+ FORMAT: "RGB"
349
+ SPATIAL: False
350
+ DATALOADER:
351
+ FILTER_EMPTY_ANNOTATIONS: False
352
+ NUM_WORKERS: 0
353
+ LOAD_PROPOSALS: False
354
+ SAMPLER_TRAIN: "TrainingSampler"
355
+ ASPECT_RATIO_GROUPING: False
356
+ TEST:
357
+ BATCH_SIZE_TOTAL: 8
358
+
359
+ # Detectron2 training config for optimizer and lr scheduler
360
+ SOLVER:
361
+ BASE_LR: 0.0001
362
+ STEPS: [0.88889, 0.96296]
363
+ MAX_ITER: 1
364
+ GAMMA: 0.1
365
+ WARMUP_FACTOR: 1.0
366
+ WARMUP_ITERS: 10
367
+ WARMUP_METHOD: "linear"
368
+ WEIGHT_DECAY: 0.05
369
+ OPTIMIZER: "ADAMW"
370
+ LR_SCHEDULER_NAME: "WarmupMultiStepLR"
371
+ LR_MULTIPLIER:
372
+ backbone: 0.1
373
+ lang_encoder: 0.1
374
+ FIX_PARAM:
375
+ backbone: True
376
+ lang_encoder: True
377
+ pixel_decoder: True
378
+ WEIGHT_DECAY_NORM: 0.0
379
+ WEIGHT_DECAY_EMBED: 0.0
380
+ CLIP_GRADIENTS:
381
+ ENABLED: True
382
+ CLIP_TYPE: "full_model"
383
+ CLIP_VALUE: 5.0 # 0.01
384
+ NORM_TYPE: 2.0
385
+ MAX_NUM_EPOCHS: 50
configs/seem/samvitl_unicl_lang_v1.yaml ADDED
@@ -0,0 +1,386 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # X-Decoder -- Generalized Decoding for Pixel, Image, and Language
3
+ # Copyright (c) 2022 Microsoft
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # Written by Xueyan Zou ([email protected])
6
+ # --------------------------------------------------------
7
+
8
+ # Define Test/Trainer/Saving
9
+ PIPELINE: XDecoderPipeline
10
+ TRAINER: xdecoder
11
+ SAVE_DIR: '../../data/output/test'
12
+ base_path: "./"
13
+
14
+ # Resume Logistic
15
+ RESUME: false
16
+ WEIGHT: false
17
+ RESUME_FROM: ''
18
+ EVAL_AT_START: false
19
+
20
+ # Logging and Debug
21
+ WANDB: False
22
+ LOG_EVERY: 100
23
+ FIND_UNUSED_PARAMETERS: false
24
+
25
+ # Speed up training
26
+ FP16: false
27
+ PORT: '36873'
28
+
29
+ # misc
30
+ LOADER:
31
+ JOINT: False
32
+ KEY_DATASET: 'coco'
33
+
34
+ ##################
35
+ # Task settings
36
+ ##################
37
+ VERBOSE: true
38
+ MODEL:
39
+ NAME: seem_model_v1
40
+ HEAD: xdecoder_head
41
+ MASK_ON: false
42
+ KEYPOINT_ON: false
43
+ LOAD_PROPOSALS: false
44
+ DIM_PROJ: 512
45
+ TEXT:
46
+ ARCH: vlpencoder
47
+ NAME: transformer
48
+ TOKENIZER: clip
49
+ CONTEXT_LENGTH: 77 # 77
50
+ WIDTH: 512
51
+ HEADS: 8
52
+ LAYERS: 12 # 6
53
+ AUTOGRESSIVE: True
54
+ BACKBONE:
55
+ NAME: vit
56
+ PRETRAINED: '/nobackup3/xueyan-data/grin_data/output/sam/sam_vit_l_0b3195.pth'
57
+ LOAD_PRETRAINED: true
58
+ VIT:
59
+ SIZE: "large"
60
+ OUT_FEATURES: ["res2", "res3", "res4", "res5"]
61
+ OUT_INDICES: [0, 1, 2, 3]
62
+ ENCODER:
63
+ NAME: transformer_encoder_deform
64
+ IGNORE_VALUE: 255
65
+ NUM_CLASSES: 133
66
+ LOSS_WEIGHT: 1.0
67
+ CONVS_DIM: 512
68
+ MASK_DIM: 512
69
+ NORM: "GN"
70
+ IN_FEATURES: ["res2", "res3", "res4", "res5"]
71
+ DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES: ["res3", "res4", "res5"]
72
+ COMMON_STRIDE: 4
73
+ TRANSFORMER_ENC_LAYERS: 6
74
+ DECODER:
75
+ NAME: seem_v1
76
+ TRANSFORMER_IN_FEATURE: "multi_scale_pixel_decoder"
77
+ MASK:
78
+ ENABLED: True
79
+ DETECTION: False
80
+ SPATIAL:
81
+ ENABLED: True
82
+ MAX_ITER: 1
83
+ GROUNDING:
84
+ ENABLED: True
85
+ MAX_LEN: 5
86
+ TEXT_WEIGHT: 2.0
87
+ CLASS_WEIGHT: 0.5
88
+ RETRIEVAL:
89
+ ENABLED: False
90
+ LVIS:
91
+ ENABLED: True
92
+ THRES: 0.7
93
+ OPENIMAGE:
94
+ ENABLED: False
95
+ NEGATIVE_SAMPLES: 5
96
+ GROUNDING:
97
+ ENABLED: False
98
+ MAX_LEN: 5
99
+ CAPTION:
100
+ ENABLED: False
101
+ PHRASE_PROB: 0.5
102
+ SIM_THRES: 0.95
103
+ DEEP_SUPERVISION: True
104
+ NO_OBJECT_WEIGHT: 0.1
105
+ GCLASS_WEIGHT: 0.4
106
+ GMASK_WEIGHT: 1.0
107
+ GDICE_WEIGHT: 1.0
108
+ SCLASS_WEIGHT: 0.4
109
+ SMASK_WEIGHT: 1.0
110
+ SDICE_WEIGHT: 1.0
111
+ OCLASS_WEIGHT: 0.4
112
+ OMASK_WEIGHT: 1.0
113
+ ODICE_WEIGHT: 1.0
114
+ CLASS_WEIGHT: 2.0
115
+ MASK_WEIGHT: 5.0
116
+ DICE_WEIGHT: 5.0
117
+ BBOX_WEIGHT: 5.0
118
+ GIOU_WEIGHT: 2.0
119
+ CAPTION_WEIGHT: 2.0
120
+ COST_SPATIAL:
121
+ CLASS_WEIGHT: 5.0
122
+ MASK_WEIGHT: 2.0
123
+ DICE_WEIGHT: 2.0
124
+ HIDDEN_DIM: 512
125
+ NUM_OBJECT_QUERIES: 101
126
+ NHEADS: 8
127
+ DROPOUT: 0.0
128
+ DIM_FEEDFORWARD: 2048
129
+ MAX_SPATIAL_LEN: [512, 512, 512, 512]
130
+ # ENC_LAYERS: 0
131
+ PRE_NORM: False
132
+ ENFORCE_INPUT_PROJ: False
133
+ SIZE_DIVISIBILITY: 1024
134
+ TRAIN_NUM_POINTS: 12544
135
+ OVERSAMPLE_RATIO: 3.0
136
+ IMPORTANCE_SAMPLE_RATIO: 0.75
137
+ DEC_LAYERS: 10 # 9 decoder layers, add one for the loss on learnable query
138
+ TOP_GROUNDING_LAYERS: 10
139
+ TOP_CAPTION_LAYERS: 10
140
+ TOP_SPATIAL_LAYERS: 10
141
+ TOP_OPENIMAGE_LAYERS: 10
142
+ TEST:
143
+ SEMANTIC_ON: True
144
+ INSTANCE_ON: True
145
+ PANOPTIC_ON: True
146
+ OVERLAP_THRESHOLD: 0.8
147
+ OBJECT_MASK_THRESHOLD: 0.8
148
+ SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE: false
149
+
150
+ # Spatial sampler
151
+ STROKE_SAMPLER:
152
+ MAX_CANDIDATE: 1
153
+ CANDIDATE_PROBS: [0.25, 0.25, 0.25, 0.25] # for training only
154
+ CANDIDATE_NAMES: ["Point", "Polygon", "Scribble", "Circle"]
155
+ DILATION: 3
156
+ CIRCLE:
157
+ NUM_STROKES: 5
158
+ STROKE_PRESET: ['object_like', 'object_like_middle', 'object_like_small']
159
+ STROKE_PROB: [0.33, 0.33, 0.33]
160
+ SCRIBBLE:
161
+ NUM_STROKES: 5
162
+ STROKE_PRESET: ['rand_curve', 'rand_curve_small']
163
+ STROKE_PROB: [0.5, 0.5]
164
+ POINT:
165
+ NUM_POINTS: 20
166
+ POLYGON:
167
+ MAX_POINTS: 9
168
+ EVAL:
169
+ MODE: 'best' # best/random/best_random
170
+ NEGATIVE: False
171
+ MAX_ITER: 20
172
+ IOU_ITER: 1
173
+ GROUNDING: False
174
+
175
+ # Multi-modal Architecture, order matters
176
+ ATTENTION_ARCH:
177
+ VARIABLE:
178
+ queries: ['object', 'grounding', 'spatial']
179
+ tokens: ['grounding', 'spatial']
180
+ memories: ['spatial']
181
+ SELF_ATTENTION:
182
+ queries:
183
+ object: ['queries_object']
184
+ grounding: ['queries_grounding', 'tokens_grounding']
185
+ spatial: ['queries_spatial', 'tokens_spatial', 'memories_spatial']
186
+ tokens:
187
+ grounding: ['queries_grounding', 'tokens_grounding']
188
+ spatial: ['tokens_spatial']
189
+ memories:
190
+ spatial: ['memories_spatial']
191
+ CROSS_ATTENTION:
192
+ queries:
193
+ object: True
194
+ grounding: True
195
+ spatial: True
196
+ memories:
197
+ spatial: True
198
+ tokens:
199
+ grounding: False
200
+ spatial: False
201
+ MASKING: ['tokens_spatial', 'tokens_grounding']
202
+ DUPLICATION:
203
+ queries:
204
+ grounding: 'queries_object'
205
+ spatial: 'queries_object'
206
+ SPATIAL_MEMORIES: 32
207
+ QUERY_NUMBER: 3
208
+
209
+ DATASETS:
210
+ TRAIN: ["coco_2017_train_panoptic_filtrefgumdval_with_sem_seg_caption_grounding_lvis",]
211
+ # TRAIN: ["coco_2017_train_panoptic_with_sem_seg_caption_grounding",]
212
+ TEST: ["coco_2017_val_panoptic_with_sem_seg", "pascalvoc_val_Point", "refcocog_val_umd"] # to evaluate instance and semantic performance as well
213
+ # TEST: ["pascalvoc_val_Point"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
214
+ # TEST: ["cocomini_val_Point", "cocomini_val_Circle", "cocomini_val_Scribble", "cocomini_val_Polygon", "cocomini_val_Box"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
215
+ # TEST: ["ade600_val_Point", "ade600_val_Circle", "ade600_val_Scribble", "ade600_val_Polygon", "ade600_val_Box"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
216
+ # TEST: ["openimage600_val_Point", "openimage600_val_Circle", "openimage600_val_Scribble", "openimage600_val_Polygon", "openimage600_val_Box"] # [pascalvoc, openimage600, ade600, davis, cocomini], [Point, Scribble, Polygon, Circle, Box]
217
+ CLASS_CONCAT: false
218
+ SIZE_DIVISIBILITY: 1024
219
+ PROPOSAL_FILES_TRAIN: []
220
+
221
+ INPUT:
222
+ PIXEL_MEAN: [123.675, 116.280, 103.530]
223
+ PIXEL_STD: [58.395, 57.120, 57.375]
224
+
225
+ TRAIN:
226
+ ASPECT_RATIO_GROUPING: true
227
+ BATCH_SIZE_TOTAL: 4
228
+ BATCH_SIZE_PER_GPU: 4
229
+ SHUFFLE: true
230
+
231
+ TEST:
232
+ DETECTIONS_PER_IMAGE: 100
233
+ NAME: coco_eval
234
+ IOU_TYPE: ['bbox', 'segm']
235
+ USE_MULTISCALE: false
236
+ BATCH_SIZE_TOTAL: 8
237
+ MODEL_FILE: ''
238
+ AUG:
239
+ ENABLED: False
240
+
241
+ DATALOADER:
242
+ FILTER_EMPTY_ANNOTATIONS: False
243
+ NUM_WORKERS: 8
244
+ LOAD_PROPOSALS: False
245
+ SAMPLER_TRAIN: "TrainingSampler"
246
+ ASPECT_RATIO_GROUPING: True
247
+
248
+ COCO:
249
+ INPUT:
250
+ MIN_SIZE_TRAIN: 800
251
+ MAX_SIZE_TRAIN: 1333
252
+ MIN_SIZE_TRAIN_SAMPLING: 'choice'
253
+ MIN_SIZE_TEST: 1000
254
+ MAX_SIZE_TEST: 1024
255
+ IMAGE_SIZE: 1024
256
+ MIN_SCALE: 0.1
257
+ MAX_SCALE: 2.0
258
+ DATASET_MAPPER_NAME: "coco_interactive"
259
+ IGNORE_VALUE: 255
260
+ COLOR_AUG_SSD: False
261
+ SIZE_DIVISIBILITY: 1024
262
+ RANDOM_FLIP: "horizontal"
263
+ MASK_FORMAT: "polygon"
264
+ FORMAT: "RGB"
265
+ CROP:
266
+ ENABLED: True
267
+ DATASET:
268
+ DATASET: 'coco'
269
+
270
+ # Validation dataset
271
+ ADE20K:
272
+ INPUT:
273
+ MIN_SIZE_TRAIN: 640
274
+ MIN_SIZE_TRAIN_SAMPLING: "choice"
275
+ MIN_SIZE_TEST: 640
276
+ MAX_SIZE_TRAIN: 2560
277
+ MAX_SIZE_TEST: 2560
278
+ MASK_FORMAT: "polygon"
279
+ CROP:
280
+ ENABLED: True
281
+ TYPE: "absolute"
282
+ SIZE: (640, 640)
283
+ SINGLE_CATEGORY_MAX_AREA: 1.0
284
+ COLOR_AUG_SSD: True
285
+ SIZE_DIVISIBILITY: 640 # used in dataset mapper
286
+ DATASET_MAPPER_NAME: "mask_former_panoptic"
287
+ FORMAT: "RGB"
288
+ DATASET:
289
+ DATASET: 'ade'
290
+
291
+ SBD:
292
+ INPUT:
293
+ MIN_SIZE_TEST: 800
294
+ MAX_SIZE_TEST: 1333
295
+ DATALOADER:
296
+ FILTER_EMPTY_ANNOTATIONS: False
297
+ NUM_WORKERS: 0
298
+ LOAD_PROPOSALS: False
299
+ SAMPLER_TRAIN: "TrainingSampler"
300
+ ASPECT_RATIO_GROUPING: False
301
+ TEST:
302
+ BATCH_SIZE_TOTAL: 1
303
+
304
+ VOC:
305
+ INPUT:
306
+ MIN_SIZE_TEST: 1000
307
+ MAX_SIZE_TEST: 1024
308
+ DATALOADER:
309
+ FILTER_EMPTY_ANNOTATIONS: False
310
+ NUM_WORKERS: 0
311
+ LOAD_PROPOSALS: False
312
+ SAMPLER_TRAIN: "TrainingSampler"
313
+ ASPECT_RATIO_GROUPING: False
314
+ TEST:
315
+ BATCH_SIZE_TOTAL: 8
316
+
317
+ DAVIS:
318
+ INPUT:
319
+ MIN_SIZE_TEST: 1000
320
+ MAX_SIZE_TEST: 1024
321
+ DATALOADER:
322
+ FILTER_EMPTY_ANNOTATIONS: False
323
+ NUM_WORKERS: 0
324
+ LOAD_PROPOSALS: False
325
+ SAMPLER_TRAIN: "TrainingSampler"
326
+ ASPECT_RATIO_GROUPING: False
327
+ TEST:
328
+ BATCH_SIZE_TOTAL: 8
329
+
330
+ VOS:
331
+ INPUT:
332
+ MIN_SIZE_TEST: 800
333
+ MAX_SIZE_TEST: 1333
334
+ DATALOADER:
335
+ FILTER_EMPTY_ANNOTATIONS: False
336
+ NUM_WORKERS: 0
337
+ LOAD_PROPOSALS: False
338
+ SAMPLER_TRAIN: "TrainingSampler"
339
+ ASPECT_RATIO_GROUPING: False
340
+ TEST:
341
+ BATCH_SIZE_TOTAL: 1
342
+
343
+ REF:
344
+ INPUT:
345
+ PIXEL_MEAN: [123.675, 116.280, 103.530]
346
+ PIXEL_STD: [58.395, 57.120, 57.375]
347
+ MIN_SIZE_TEST: 1000
348
+ MAX_SIZE_TEST: 1024
349
+ FORMAT: "RGB"
350
+ SPATIAL: False
351
+ DATALOADER:
352
+ FILTER_EMPTY_ANNOTATIONS: False
353
+ NUM_WORKERS: 4
354
+ LOAD_PROPOSALS: False
355
+ SAMPLER_TRAIN: "TrainingSampler"
356
+ ASPECT_RATIO_GROUPING: False
357
+ TEST:
358
+ BATCH_SIZE_TOTAL: 8
359
+
360
+ # Detectron2 training config for optimizer and lr scheduler
361
+ SOLVER:
362
+ BASE_LR: 0.0001
363
+ STEPS: [0.88889, 0.96296]
364
+ MAX_ITER: 1
365
+ GAMMA: 0.1
366
+ WARMUP_FACTOR: 1.0
367
+ WARMUP_ITERS: 10
368
+ WARMUP_METHOD: "linear"
369
+ WEIGHT_DECAY: 0.05
370
+ OPTIMIZER: "ADAMW"
371
+ LR_SCHEDULER_NAME: "WarmupMultiStepLR"
372
+ LR_MULTIPLIER:
373
+ backbone: 0.1
374
+ lang_encoder: 0.1
375
+ FIX_PARAM:
376
+ backbone: True
377
+ lang_encoder: True
378
+ pixel_decoder: True
379
+ WEIGHT_DECAY_NORM: 0.0
380
+ WEIGHT_DECAY_EMBED: 0.0
381
+ CLIP_GRADIENTS:
382
+ ENABLED: True
383
+ CLIP_TYPE: "full_model"
384
+ CLIP_VALUE: 5.0 # 0.01
385
+ NORM_TYPE: 2.0
386
+ MAX_NUM_EPOCHS: 50
configs/xdecoder/davitd3_unicl_lang.yaml ADDED
@@ -0,0 +1,373 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # X-Decoder -- Generalized Decoding for Pixel, Image, and Language
3
+ # Copyright (c) 2022 Microsoft
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # Written by Xueyan Zou ([email protected])
6
+ # --------------------------------------------------------
7
+
8
+ # Define Test/Trainer/Saving
9
+ PIPELINE: XDecoderPipeline
10
+ TRAINER: xdecoder
11
+ SAVE_DIR: '../../data/output/test'
12
+ base_path: "./"
13
+
14
+ # Resume Logistic
15
+ RESUME: false
16
+ WEIGHT: false
17
+ RESET_DATA_LOADER: false
18
+ RESUME_FROM: ''
19
+ EVAL_AT_START: False
20
+
21
+ # Logging and Debug
22
+ WANDB: False
23
+ LOG_EVERY: 100
24
+ FIND_UNUSED_PARAMETERS: false
25
+
26
+ # Speed up training
27
+ FP16: false
28
+ PORT: '36873'
29
+
30
+ # misc
31
+ LOADER:
32
+ JOINT: True
33
+ KEY_DATASET: 'coco'
34
+
35
+ ##################
36
+ # Task settings
37
+ ##################
38
+ VERBOSE: true
39
+ MODEL:
40
+ NAME: xdecoder_model
41
+ HEAD: xdecoder_head
42
+ MASK_ON: false
43
+ KEYPOINT_ON: false
44
+ LOAD_PROPOSALS: false
45
+ DIM_PROJ: 512
46
+ BACKBONE_DIM: 1024
47
+ TEXT:
48
+ ARCH: vlpencoder
49
+ NAME: transformer
50
+ TOKENIZER: clip
51
+ CONTEXT_LENGTH: 77 # 77
52
+ WIDTH: 512
53
+ HEADS: 8
54
+ LAYERS: 12 # 6
55
+ AUTOGRESSIVE: True
56
+ BACKBONE:
57
+ NAME: davit
58
+ PRETRAINED: ''
59
+ LOAD_PRETRAINED: false
60
+ PRETRAINED_LAYERS: '*'
61
+ DAVIT:
62
+ DROP_PATH_RATE: 0.3
63
+ PATCH_SIZE: [7, 2, 2, 2]
64
+ PATCH_STRIDE: [4, 2, 2, 2]
65
+ PATCH_PADDING: [3, 0, 0, 0]
66
+ PATCH_PRENORM: [false, true, true, true]
67
+ DIM_EMBED: [128, 256, 512, 1024]
68
+ NUM_HEADS: [4, 8, 16, 32]
69
+ NUM_GROUPS: [4, 8, 16, 32]
70
+ DEPTHS: [1, 1, 9, 1]
71
+ OUT_FEATURES: ["res2", "res3", "res4", "res5"]
72
+ OUT_INDICES: [0, 1, 2, 3]
73
+ ENABLE_CHECKPOINT: False
74
+ ENCODER:
75
+ NAME: transformer_encoder_fpn
76
+ IGNORE_VALUE: 255
77
+ NUM_CLASSES: 133
78
+ LOSS_WEIGHT: 1.0
79
+ CONVS_DIM: 512
80
+ MASK_DIM: 512
81
+ NORM: "GN"
82
+ IN_FEATURES: ["res2", "res3", "res4", "res5"]
83
+ DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES: ["res3", "res4", "res5"]
84
+ COMMON_STRIDE: 4
85
+ TRANSFORMER_ENC_LAYERS: 6
86
+ DECODER:
87
+ NAME: xdecoder
88
+ TRANSFORMER_IN_FEATURE: "multi_scale_pixel_decoder"
89
+ MASK: True
90
+ GROUNDING:
91
+ ENABLED: True
92
+ MAX_LEN: 5
93
+ TEXT_WEIGHT: 2.0
94
+ CLASS_WEIGHT: 0.5
95
+ DETECTION: False
96
+ CAPTION:
97
+ ENABLED: True
98
+ PHRASE_PROB: 0.0
99
+ SIM_THRES: 0.95
100
+ CAPTIONING:
101
+ ENABLED: True
102
+ STEP: 50
103
+ RETRIEVAL:
104
+ ENABLED: True
105
+ DIM_IMG: 768
106
+ ENSEMBLE: True
107
+ DEEP_SUPERVISION: True
108
+ NO_OBJECT_WEIGHT: 0.1
109
+ CAPTION_WEIGHT: 1.0
110
+ CAPTIONING_WEIGHT: 2.0
111
+ RETRIEVAL_WEIGHT: 2.0
112
+ BACKBONER_WEIGHT: 8.0
113
+ GCLASS_WEIGHT: 0.4
114
+ GMASK_WEIGHT: 1.0
115
+ GDICE_WEIGHT: 1.0
116
+ OCLASS_WEIGHT: 0.4
117
+ OMASK_WEIGHT: 1.0
118
+ ODICE_WEIGHT: 1.0
119
+ CLASS_WEIGHT: 2.0
120
+ MASK_WEIGHT: 5.0
121
+ DICE_WEIGHT: 5.0
122
+ BBOX_WEIGHT: 5.0
123
+ GIOU_WEIGHT: 2.0
124
+ HIDDEN_DIM: 512
125
+ NUM_OBJECT_QUERIES: 201
126
+ NHEADS: 8
127
+ DROPOUT: 0.0
128
+ DIM_FEEDFORWARD: 2048
129
+ PRE_NORM: False
130
+ ENFORCE_INPUT_PROJ: False
131
+ SIZE_DIVISIBILITY: 32
132
+ TRAIN_NUM_POINTS: 12544
133
+ OVERSAMPLE_RATIO: 3.0
134
+ IMPORTANCE_SAMPLE_RATIO: 0.75
135
+ DEC_LAYERS: 10 # 9 decoder layers, add one for the loss on learnable query
136
+ TOP_GROUNDING_LAYERS: 3
137
+ TOP_CAPTION_LAYERS: 3
138
+ TOP_CAPTIONING_LAYERS: 3
139
+ TOP_RETRIEVAL_LAYERS: 3
140
+ TEST:
141
+ SEMANTIC_ON: True
142
+ INSTANCE_ON: True
143
+ PANOPTIC_ON: True
144
+ OVERLAP_THRESHOLD: 0.8
145
+ OBJECT_MASK_THRESHOLD: 0.8
146
+ SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE: false
147
+
148
+ COCO:
149
+ INPUT:
150
+ MIN_SIZE_TRAIN: 800
151
+ MAX_SIZE_TRAIN: 1333
152
+ MIN_SIZE_TRAIN_SAMPLING: 'choice'
153
+ MIN_SIZE_TEST: 800
154
+ MAX_SIZE_TEST: 1333
155
+ IMAGE_SIZE: 1024
156
+ MIN_SCALE: 0.1
157
+ MAX_SCALE: 2.0
158
+ DATASET_MAPPER_NAME: "coco_panoptic_lsj"
159
+ IGNORE_VALUE: 255
160
+ COLOR_AUG_SSD: False
161
+ SIZE_DIVISIBILITY: 32
162
+ RANDOM_FLIP: "horizontal"
163
+ MASK_FORMAT: "polygon"
164
+ FORMAT: "RGB"
165
+ CROP:
166
+ ENABLED: True
167
+ DATASET:
168
+ DATASET: 'coco'
169
+ TEST:
170
+ DETECTIONS_PER_IMAGE: 100
171
+ NAME: coco_eval
172
+ IOU_TYPE: ['bbox', 'segm']
173
+ USE_MULTISCALE: false
174
+ BATCH_SIZE_TOTAL: 8
175
+ MODEL_FILE: ''
176
+ AUG:
177
+ ENABLED: False
178
+ TRAIN:
179
+ ASPECT_RATIO_GROUPING: true
180
+ BATCH_SIZE_TOTAL: 2
181
+ BATCH_SIZE_PER_GPU: 1
182
+ SHUFFLE: true
183
+ DATALOADER:
184
+ FILTER_EMPTY_ANNOTATIONS: False
185
+ NUM_WORKERS: 2
186
+ LOAD_PROPOSALS: False
187
+ SAMPLER_TRAIN: "TrainingSampler"
188
+ ASPECT_RATIO_GROUPING: True
189
+
190
+ VLP:
191
+ INPUT:
192
+ IMAGE_SIZE: 224
193
+ DATASET_MAPPER_NAME: "vlpretrain"
194
+ IGNORE_VALUE: 255
195
+ COLOR_AUG_SSD: False
196
+ SIZE_DIVISIBILITY: 32
197
+ MASK_FORMAT: "polygon"
198
+ FORMAT: "RGB"
199
+ CROP:
200
+ ENABLED: True
201
+ TRAIN:
202
+ BATCH_SIZE_TOTAL: 2
203
+ BATCH_SIZE_PER_GPU: 1
204
+ TEST:
205
+ BATCH_SIZE_TOTAL: 256
206
+ DATALOADER:
207
+ FILTER_EMPTY_ANNOTATIONS: False
208
+ NUM_WORKERS: 16
209
+ LOAD_PROPOSALS: False
210
+ SAMPLER_TRAIN: "TrainingSampler"
211
+ ASPECT_RATIO_GROUPING: True
212
+
213
+ INPUT:
214
+ PIXEL_MEAN: [123.675, 116.280, 103.530]
215
+ PIXEL_STD: [58.395, 57.120, 57.375]
216
+
217
+ DATASETS:
218
+ TRAIN: ["coco_2017_train_panoptic_filtall_with_sem_seg_caption_grounding", "vlp_train"]
219
+ # open vocabulary segmentation evaluation.
220
+ # TEST: ["ade20k_panoptic_val"]
221
+ TEST: ["coco_2017_val_panoptic_with_sem_seg", "vlp_captioning_val", "refcocog_val_umd", "vlp_val", "ade20k_panoptic_val"]
222
+ # TEST: ["ade20k_panoptic_val", "ade20k_full_sem_seg_val", "sunrgbd_37_val_seg", "scannet_21_val_seg", "scannet_21_panoptic_val", "scannet_41_val_seg", "cityscapes_fine_panoptic_val", "cityscapes_fine_instance_seg_val", "cityscapes_fine_sem_seg_val", "bdd10k_val_sem_seg", "bdd10k_40_panoptic_val"]
223
+ # Supervised metrics evaluation.
224
+ # TEST: ["vlp_captioning_val", "refcocog_val_umd", "vlp_val"]
225
+ SIZE_DIVISIBILITY: 32
226
+ PROPOSAL_FILES_TRAIN: []
227
+
228
+ DATALOADER:
229
+ FILTER_EMPTY_ANNOTATIONS: False
230
+ NUM_WORKERS: 16
231
+ LOAD_PROPOSALS: False
232
+ SAMPLER_TRAIN: "TrainingSampler"
233
+ ASPECT_RATIO_GROUPING: True
234
+
235
+ # Detectron2 training config for optimizer and lr scheduler
236
+ SOLVER:
237
+ BASE_LR: 0.0001
238
+ STEPS: [0.88889, 0.96296]
239
+ MAX_ITER: 1
240
+ GAMMA: 0.1
241
+ WARMUP_FACTOR: 1.0
242
+ WARMUP_ITERS: 10
243
+ WARMUP_METHOD: "linear"
244
+ WEIGHT_DECAY: 0.05
245
+ OPTIMIZER: "ADAMW"
246
+ LR_SCHEDULER_NAME: "WarmupMultiStepLR"
247
+ LR_MULTIPLIER:
248
+ backbone: 0.1
249
+ lang_encoder: 0.1
250
+ WEIGHT_DECAY_NORM: 0.0
251
+ WEIGHT_DECAY_EMBED: 0.0
252
+ CLIP_GRADIENTS:
253
+ ENABLED: True
254
+ CLIP_TYPE: "full_model"
255
+ CLIP_VALUE: 5.0 # 0.01
256
+ NORM_TYPE: 2.0
257
+ AMP:
258
+ ENABLED: True
259
+ MAX_NUM_EPOCHS: 50
260
+
261
+ # Evaluation Dataset
262
+ ADE20K:
263
+ INPUT:
264
+ MIN_SIZE_TRAIN: 640
265
+ MIN_SIZE_TRAIN_SAMPLING: "choice"
266
+ MIN_SIZE_TEST: 640
267
+ MAX_SIZE_TRAIN: 2560
268
+ MAX_SIZE_TEST: 2560
269
+ MASK_FORMAT: "polygon"
270
+ CROP:
271
+ ENABLED: True
272
+ TYPE: "absolute"
273
+ SIZE: (640, 640)
274
+ SINGLE_CATEGORY_MAX_AREA: 1.0
275
+ COLOR_AUG_SSD: True
276
+ SIZE_DIVISIBILITY: 640 # used in dataset mapper
277
+ DATASET_MAPPER_NAME: "mask_former_panoptic"
278
+ FORMAT: "RGB"
279
+ DATASET:
280
+ DATASET: 'ade'
281
+ TEST:
282
+ BATCH_SIZE_TOTAL: 8
283
+
284
+
285
+ REF:
286
+ INPUT:
287
+ PIXEL_MEAN: [123.675, 116.280, 103.530]
288
+ PIXEL_STD: [58.395, 57.120, 57.375]
289
+ MIN_SIZE_TEST: 512
290
+ MAX_SIZE_TEST: 1024
291
+ FORMAT: "RGB"
292
+ DATALOADER:
293
+ FILTER_EMPTY_ANNOTATIONS: False
294
+ NUM_WORKERS: 0
295
+ LOAD_PROPOSALS: False
296
+ SAMPLER_TRAIN: "TrainingSampler"
297
+ ASPECT_RATIO_GROUPING: False
298
+ TEST:
299
+ BATCH_SIZE_TOTAL: 8
300
+
301
+ SUN:
302
+ INPUT:
303
+ PIXEL_MEAN: [123.675, 116.280, 103.530]
304
+ PIXEL_STD: [58.395, 57.120, 57.375]
305
+ MIN_SIZE_TEST: 512
306
+ MAX_SIZE_TEST: 1024
307
+ DATALOADER:
308
+ FILTER_EMPTY_ANNOTATIONS: False
309
+ NUM_WORKERS: 0
310
+ LOAD_PROPOSALS: False
311
+ SAMPLER_TRAIN: "TrainingSampler"
312
+ ASPECT_RATIO_GROUPING: False
313
+ TEST:
314
+ BATCH_SIZE_TOTAL: 8
315
+
316
+ SCAN:
317
+ INPUT:
318
+ PIXEL_MEAN: [123.675, 116.280, 103.530]
319
+ PIXEL_STD: [58.395, 57.120, 57.375]
320
+ MIN_SIZE_TEST: 512
321
+ MAX_SIZE_TEST: 1024
322
+ DATALOADER:
323
+ FILTER_EMPTY_ANNOTATIONS: False
324
+ NUM_WORKERS: 0
325
+ LOAD_PROPOSALS: False
326
+ SAMPLER_TRAIN: "TrainingSampler"
327
+ ASPECT_RATIO_GROUPING: False
328
+ TEST:
329
+ BATCH_SIZE_TOTAL: 8
330
+
331
+ BDD:
332
+ INPUT:
333
+ PIXEL_MEAN: [123.675, 116.280, 103.530]
334
+ PIXEL_STD: [58.395, 57.120, 57.375]
335
+ MIN_SIZE_TEST: 800
336
+ MAX_SIZE_TEST: 1333
337
+ DATALOADER:
338
+ FILTER_EMPTY_ANNOTATIONS: False
339
+ NUM_WORKERS: 0
340
+ LOAD_PROPOSALS: False
341
+ SAMPLER_TRAIN: "TrainingSampler"
342
+ ASPECT_RATIO_GROUPING: False
343
+ TEST:
344
+ BATCH_SIZE_TOTAL: 8
345
+
346
+ CITY:
347
+ INPUT:
348
+ MIN_SIZE_TRAIN: 1024 # !!python/object/apply:eval ["[int(x * 0.1 * 1024) for x in range(5, 21)]"]
349
+ MIN_SIZE_TRAIN_SAMPLING: "choice"
350
+ MIN_SIZE_TEST: 1024
351
+ MAX_SIZE_TRAIN: 4096
352
+ MAX_SIZE_TEST: 2048
353
+ CROP:
354
+ ENABLED: True
355
+ TYPE: "absolute"
356
+ SIZE: (512, 1024)
357
+ SINGLE_CATEGORY_MAX_AREA: 1.0
358
+ COLOR_AUG_SSD: True
359
+ SIZE_DIVISIBILITY: -1
360
+ FORMAT: "RGB"
361
+ DATASET_MAPPER_NAME: "mask_former_panoptic"
362
+ MASK_FORMAT: "polygon"
363
+ TEST:
364
+ EVAL_PERIOD: 5000
365
+ BATCH_SIZE_TOTAL: 8
366
+ AUG:
367
+ ENABLED: False
368
+ MIN_SIZES: [512, 768, 1024, 1280, 1536, 1792]
369
+ MAX_SIZE: 4096
370
+ FLIP: True
371
+ DATALOADER:
372
+ FILTER_EMPTY_ANNOTATIONS: True
373
+ NUM_WORKERS: 4
configs/xdecoder/davitd5_unicl_lang.yaml ADDED
@@ -0,0 +1,373 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # X-Decoder -- Generalized Decoding for Pixel, Image, and Language
3
+ # Copyright (c) 2022 Microsoft
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # Written by Xueyan Zou ([email protected])
6
+ # --------------------------------------------------------
7
+
8
+ # Define Test/Trainer/Saving
9
+ PIPELINE: XDecoderPipeline
10
+ TRAINER: xdecoder
11
+ SAVE_DIR: '../../data/output/test'
12
+ base_path: "./"
13
+
14
+ # Resume Logistic
15
+ RESUME: false
16
+ WEIGHT: false
17
+ RESET_DATA_LOADER: false
18
+ RESUME_FROM: ''
19
+ EVAL_AT_START: False
20
+
21
+ # Logging and Debug
22
+ WANDB: False
23
+ LOG_EVERY: 100
24
+ FIND_UNUSED_PARAMETERS: false
25
+
26
+ # Speed up training
27
+ FP16: false
28
+ PORT: '36873'
29
+
30
+ # misc
31
+ LOADER:
32
+ JOINT: True
33
+ KEY_DATASET: 'coco'
34
+
35
+ ##################
36
+ # Task settings
37
+ ##################
38
+ VERBOSE: true
39
+ MODEL:
40
+ NAME: xdecoder_model
41
+ HEAD: xdecoder_head
42
+ MASK_ON: false
43
+ KEYPOINT_ON: false
44
+ LOAD_PROPOSALS: false
45
+ DIM_PROJ: 512
46
+ BACKBONE_DIM: 2048
47
+ TEXT:
48
+ ARCH: vlpencoder
49
+ NAME: transformer
50
+ TOKENIZER: clip
51
+ CONTEXT_LENGTH: 77 # 77
52
+ WIDTH: 512
53
+ HEADS: 8
54
+ LAYERS: 12 # 6
55
+ AUTOGRESSIVE: True
56
+ BACKBONE:
57
+ NAME: davit
58
+ PRETRAINED: ''
59
+ LOAD_PRETRAINED: false
60
+ PRETRAINED_LAYERS: '*'
61
+ DAVIT:
62
+ DROP_PATH_RATE: 0.3
63
+ PATCH_SIZE: [7, 3, 3, 3]
64
+ PATCH_STRIDE: [4, 2, 2, 2]
65
+ PATCH_PADDING: [3, 1, 1, 1]
66
+ PATCH_PRENORM: [false, true, true, true]
67
+ DIM_EMBED: [256, 512, 1024, 2048]
68
+ NUM_HEADS: [8, 16, 32, 64]
69
+ NUM_GROUPS: [8, 16, 32, 64]
70
+ DEPTHS: [1, 1, 9, 1]
71
+ OUT_FEATURES: ["res2", "res3", "res4", "res5"]
72
+ OUT_INDICES: [0, 1, 2, 3]
73
+ ENABLE_CHECKPOINT: False
74
+ ENCODER:
75
+ NAME: transformer_encoder_fpn
76
+ IGNORE_VALUE: 255
77
+ NUM_CLASSES: 133
78
+ LOSS_WEIGHT: 1.0
79
+ CONVS_DIM: 512
80
+ MASK_DIM: 512
81
+ NORM: "GN"
82
+ IN_FEATURES: ["res2", "res3", "res4", "res5"]
83
+ DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES: ["res3", "res4", "res5"]
84
+ COMMON_STRIDE: 4
85
+ TRANSFORMER_ENC_LAYERS: 6
86
+ DECODER:
87
+ NAME: xdecoder
88
+ TRANSFORMER_IN_FEATURE: "multi_scale_pixel_decoder"
89
+ MASK: True
90
+ GROUNDING:
91
+ ENABLED: True
92
+ MAX_LEN: 5
93
+ TEXT_WEIGHT: 2.0
94
+ CLASS_WEIGHT: 0.5
95
+ DETECTION: False
96
+ CAPTION:
97
+ ENABLED: True
98
+ PHRASE_PROB: 0.0
99
+ SIM_THRES: 0.95
100
+ CAPTIONING:
101
+ ENABLED: True
102
+ STEP: 50
103
+ RETRIEVAL:
104
+ ENABLED: True
105
+ DIM_IMG: 768
106
+ ENSEMBLE: True
107
+ DEEP_SUPERVISION: True
108
+ NO_OBJECT_WEIGHT: 0.1
109
+ CAPTION_WEIGHT: 1.0
110
+ CAPTIONING_WEIGHT: 2.0
111
+ RETRIEVAL_WEIGHT: 2.0
112
+ BACKBONER_WEIGHT: 8.0
113
+ GCLASS_WEIGHT: 0.4
114
+ GMASK_WEIGHT: 1.0
115
+ GDICE_WEIGHT: 1.0
116
+ OCLASS_WEIGHT: 0.4
117
+ OMASK_WEIGHT: 1.0
118
+ ODICE_WEIGHT: 1.0
119
+ CLASS_WEIGHT: 2.0
120
+ MASK_WEIGHT: 5.0
121
+ DICE_WEIGHT: 5.0
122
+ BBOX_WEIGHT: 5.0
123
+ GIOU_WEIGHT: 2.0
124
+ HIDDEN_DIM: 512
125
+ NUM_OBJECT_QUERIES: 201
126
+ NHEADS: 8
127
+ DROPOUT: 0.0
128
+ DIM_FEEDFORWARD: 2048
129
+ PRE_NORM: False
130
+ ENFORCE_INPUT_PROJ: False
131
+ SIZE_DIVISIBILITY: 32
132
+ TRAIN_NUM_POINTS: 12544
133
+ OVERSAMPLE_RATIO: 3.0
134
+ IMPORTANCE_SAMPLE_RATIO: 0.75
135
+ DEC_LAYERS: 10 # 9 decoder layers, add one for the loss on learnable query
136
+ TOP_GROUNDING_LAYERS: 3
137
+ TOP_CAPTION_LAYERS: 3
138
+ TOP_CAPTIONING_LAYERS: 3
139
+ TOP_RETRIEVAL_LAYERS: 3
140
+ TEST:
141
+ SEMANTIC_ON: True
142
+ INSTANCE_ON: True
143
+ PANOPTIC_ON: True
144
+ OVERLAP_THRESHOLD: 0.8
145
+ OBJECT_MASK_THRESHOLD: 0.8
146
+ SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE: false
147
+
148
+ COCO:
149
+ INPUT:
150
+ MIN_SIZE_TRAIN: 800
151
+ MAX_SIZE_TRAIN: 1333
152
+ MIN_SIZE_TRAIN_SAMPLING: 'choice'
153
+ MIN_SIZE_TEST: 800
154
+ MAX_SIZE_TEST: 1333
155
+ IMAGE_SIZE: 1024
156
+ MIN_SCALE: 0.1
157
+ MAX_SCALE: 2.0
158
+ DATASET_MAPPER_NAME: "coco_panoptic_lsj"
159
+ IGNORE_VALUE: 255
160
+ COLOR_AUG_SSD: False
161
+ SIZE_DIVISIBILITY: 32
162
+ RANDOM_FLIP: "horizontal"
163
+ MASK_FORMAT: "polygon"
164
+ FORMAT: "RGB"
165
+ CROP:
166
+ ENABLED: True
167
+ DATASET:
168
+ DATASET: 'coco'
169
+ TEST:
170
+ DETECTIONS_PER_IMAGE: 100
171
+ NAME: coco_eval
172
+ IOU_TYPE: ['bbox', 'segm']
173
+ USE_MULTISCALE: false
174
+ BATCH_SIZE_TOTAL: 8
175
+ MODEL_FILE: ''
176
+ AUG:
177
+ ENABLED: False
178
+ TRAIN:
179
+ ASPECT_RATIO_GROUPING: true
180
+ BATCH_SIZE_TOTAL: 2
181
+ BATCH_SIZE_PER_GPU: 1
182
+ SHUFFLE: true
183
+ DATALOADER:
184
+ FILTER_EMPTY_ANNOTATIONS: False
185
+ NUM_WORKERS: 2
186
+ LOAD_PROPOSALS: False
187
+ SAMPLER_TRAIN: "TrainingSampler"
188
+ ASPECT_RATIO_GROUPING: True
189
+
190
+ VLP:
191
+ INPUT:
192
+ IMAGE_SIZE: 224
193
+ DATASET_MAPPER_NAME: "vlpretrain"
194
+ IGNORE_VALUE: 255
195
+ COLOR_AUG_SSD: False
196
+ SIZE_DIVISIBILITY: 32
197
+ MASK_FORMAT: "polygon"
198
+ FORMAT: "RGB"
199
+ CROP:
200
+ ENABLED: True
201
+ TRAIN:
202
+ BATCH_SIZE_TOTAL: 2
203
+ BATCH_SIZE_PER_GPU: 1
204
+ TEST:
205
+ BATCH_SIZE_TOTAL: 256
206
+ DATALOADER:
207
+ FILTER_EMPTY_ANNOTATIONS: False
208
+ NUM_WORKERS: 16
209
+ LOAD_PROPOSALS: False
210
+ SAMPLER_TRAIN: "TrainingSampler"
211
+ ASPECT_RATIO_GROUPING: True
212
+
213
+ INPUT:
214
+ PIXEL_MEAN: [123.675, 116.280, 103.530]
215
+ PIXEL_STD: [58.395, 57.120, 57.375]
216
+
217
+ DATASETS:
218
+ TRAIN: ["coco_2017_train_panoptic_filtall_with_sem_seg_caption_grounding", "vlp_train"]
219
+ # open vocabulary segmentation evaluation.
220
+ # TEST: ["ade20k_panoptic_val"]
221
+ TEST: ["coco_2017_val_panoptic_with_sem_seg", "vlp_captioning_val", "refcocog_val_umd", "vlp_val", "ade20k_panoptic_val"]
222
+ # TEST: ["ade20k_panoptic_val", "ade20k_full_sem_seg_val", "sunrgbd_37_val_seg", "scannet_21_val_seg", "scannet_21_panoptic_val", "scannet_41_val_seg", "cityscapes_fine_panoptic_val", "cityscapes_fine_instance_seg_val", "cityscapes_fine_sem_seg_val", "bdd10k_val_sem_seg", "bdd10k_40_panoptic_val"]
223
+ # Supervised metrics evaluation.
224
+ # TEST: ["vlp_captioning_val", "refcocog_val_umd", "vlp_val"]
225
+ SIZE_DIVISIBILITY: 32
226
+ PROPOSAL_FILES_TRAIN: []
227
+
228
+ DATALOADER:
229
+ FILTER_EMPTY_ANNOTATIONS: False
230
+ NUM_WORKERS: 16
231
+ LOAD_PROPOSALS: False
232
+ SAMPLER_TRAIN: "TrainingSampler"
233
+ ASPECT_RATIO_GROUPING: True
234
+
235
+ # Detectron2 training config for optimizer and lr scheduler
236
+ SOLVER:
237
+ BASE_LR: 0.0001
238
+ STEPS: [0.88889, 0.96296]
239
+ MAX_ITER: 1
240
+ GAMMA: 0.1
241
+ WARMUP_FACTOR: 1.0
242
+ WARMUP_ITERS: 10
243
+ WARMUP_METHOD: "linear"
244
+ WEIGHT_DECAY: 0.05
245
+ OPTIMIZER: "ADAMW"
246
+ LR_SCHEDULER_NAME: "WarmupMultiStepLR"
247
+ LR_MULTIPLIER:
248
+ backbone: 0.1
249
+ lang_encoder: 0.1
250
+ WEIGHT_DECAY_NORM: 0.0
251
+ WEIGHT_DECAY_EMBED: 0.0
252
+ CLIP_GRADIENTS:
253
+ ENABLED: True
254
+ CLIP_TYPE: "full_model"
255
+ CLIP_VALUE: 5.0 # 0.01
256
+ NORM_TYPE: 2.0
257
+ AMP:
258
+ ENABLED: True
259
+ MAX_NUM_EPOCHS: 50
260
+
261
+ # Evaluation Dataset
262
+ ADE20K:
263
+ INPUT:
264
+ MIN_SIZE_TRAIN: 640
265
+ MIN_SIZE_TRAIN_SAMPLING: "choice"
266
+ MIN_SIZE_TEST: 640
267
+ MAX_SIZE_TRAIN: 2560
268
+ MAX_SIZE_TEST: 2560
269
+ MASK_FORMAT: "polygon"
270
+ CROP:
271
+ ENABLED: True
272
+ TYPE: "absolute"
273
+ SIZE: (640, 640)
274
+ SINGLE_CATEGORY_MAX_AREA: 1.0
275
+ COLOR_AUG_SSD: True
276
+ SIZE_DIVISIBILITY: 640 # used in dataset mapper
277
+ DATASET_MAPPER_NAME: "mask_former_panoptic"
278
+ FORMAT: "RGB"
279
+ DATASET:
280
+ DATASET: 'ade'
281
+ TEST:
282
+ BATCH_SIZE_TOTAL: 8
283
+
284
+
285
+ REF:
286
+ INPUT:
287
+ PIXEL_MEAN: [123.675, 116.280, 103.530]
288
+ PIXEL_STD: [58.395, 57.120, 57.375]
289
+ MIN_SIZE_TEST: 512
290
+ MAX_SIZE_TEST: 1024
291
+ FORMAT: "RGB"
292
+ DATALOADER:
293
+ FILTER_EMPTY_ANNOTATIONS: False
294
+ NUM_WORKERS: 0
295
+ LOAD_PROPOSALS: False
296
+ SAMPLER_TRAIN: "TrainingSampler"
297
+ ASPECT_RATIO_GROUPING: False
298
+ TEST:
299
+ BATCH_SIZE_TOTAL: 8
300
+
301
+ SUN:
302
+ INPUT:
303
+ PIXEL_MEAN: [123.675, 116.280, 103.530]
304
+ PIXEL_STD: [58.395, 57.120, 57.375]
305
+ MIN_SIZE_TEST: 512
306
+ MAX_SIZE_TEST: 1024
307
+ DATALOADER:
308
+ FILTER_EMPTY_ANNOTATIONS: False
309
+ NUM_WORKERS: 0
310
+ LOAD_PROPOSALS: False
311
+ SAMPLER_TRAIN: "TrainingSampler"
312
+ ASPECT_RATIO_GROUPING: False
313
+ TEST:
314
+ BATCH_SIZE_TOTAL: 8
315
+
316
+ SCAN:
317
+ INPUT:
318
+ PIXEL_MEAN: [123.675, 116.280, 103.530]
319
+ PIXEL_STD: [58.395, 57.120, 57.375]
320
+ MIN_SIZE_TEST: 512
321
+ MAX_SIZE_TEST: 1024
322
+ DATALOADER:
323
+ FILTER_EMPTY_ANNOTATIONS: False
324
+ NUM_WORKERS: 0
325
+ LOAD_PROPOSALS: False
326
+ SAMPLER_TRAIN: "TrainingSampler"
327
+ ASPECT_RATIO_GROUPING: False
328
+ TEST:
329
+ BATCH_SIZE_TOTAL: 8
330
+
331
+ BDD:
332
+ INPUT:
333
+ PIXEL_MEAN: [123.675, 116.280, 103.530]
334
+ PIXEL_STD: [58.395, 57.120, 57.375]
335
+ MIN_SIZE_TEST: 800
336
+ MAX_SIZE_TEST: 1333
337
+ DATALOADER:
338
+ FILTER_EMPTY_ANNOTATIONS: False
339
+ NUM_WORKERS: 0
340
+ LOAD_PROPOSALS: False
341
+ SAMPLER_TRAIN: "TrainingSampler"
342
+ ASPECT_RATIO_GROUPING: False
343
+ TEST:
344
+ BATCH_SIZE_TOTAL: 8
345
+
346
+ CITY:
347
+ INPUT:
348
+ MIN_SIZE_TRAIN: 1024 # !!python/object/apply:eval ["[int(x * 0.1 * 1024) for x in range(5, 21)]"]
349
+ MIN_SIZE_TRAIN_SAMPLING: "choice"
350
+ MIN_SIZE_TEST: 1024
351
+ MAX_SIZE_TRAIN: 4096
352
+ MAX_SIZE_TEST: 2048
353
+ CROP:
354
+ ENABLED: True
355
+ TYPE: "absolute"
356
+ SIZE: (512, 1024)
357
+ SINGLE_CATEGORY_MAX_AREA: 1.0
358
+ COLOR_AUG_SSD: True
359
+ SIZE_DIVISIBILITY: -1
360
+ FORMAT: "RGB"
361
+ DATASET_MAPPER_NAME: "mask_former_panoptic"
362
+ MASK_FORMAT: "polygon"
363
+ TEST:
364
+ EVAL_PERIOD: 5000
365
+ BATCH_SIZE_TOTAL: 8
366
+ AUG:
367
+ ENABLED: False
368
+ MIN_SIZES: [512, 768, 1024, 1280, 1536, 1792]
369
+ MAX_SIZE: 4096
370
+ FLIP: True
371
+ DATALOADER:
372
+ FILTER_EMPTY_ANNOTATIONS: True
373
+ NUM_WORKERS: 4