Delete demo
Browse files- demo/__init__.py +0 -0
- demo/seem/.DS_Store +0 -0
- demo/seem/__init__.py +0 -0
- demo/seem/app.py +0 -155
- demo/seem/examples/corgi1.webp +0 -0
- demo/seem/examples/corgi2.jpg +0 -0
- demo/seem/examples/fries1.png +0 -3
- demo/seem/examples/fries2.png +0 -3
- demo/seem/examples/minecraft1.jpg +0 -3
- demo/seem/examples/placeholder.png +0 -0
- demo/seem/examples/ref_vase.JPG +0 -3
- demo/seem/examples/river1.png +0 -3
- demo/seem/examples/river1.wav +0 -3
- demo/seem/examples/river1_mask.png +0 -0
- demo/seem/examples/river2.png +0 -3
- demo/seem/examples/vasedeck.mp4 +0 -3
- demo/seem/examples/zebras1.jpg +0 -0
- demo/seem/examples/zebras2.jpg +0 -0
- demo/seem/tasks/__init__.py +0 -1
- demo/seem/tasks/interactive.py +0 -268
demo/__init__.py
DELETED
File without changes
|
demo/seem/.DS_Store
DELETED
Binary file (6.15 kB)
|
|
demo/seem/__init__.py
DELETED
File without changes
|
demo/seem/app.py
DELETED
@@ -1,155 +0,0 @@
|
|
1 |
-
# --------------------------------------------------------
|
2 |
-
# SEEM -- Segment Everything Everywhere All At Once
|
3 |
-
# Copyright (c) 2022 Microsoft
|
4 |
-
# Licensed under The MIT License [see LICENSE for details]
|
5 |
-
# Written by Xueyan Zou ([email protected]), Jianwei Yang ([email protected])
|
6 |
-
# --------------------------------------------------------
|
7 |
-
|
8 |
-
import os
|
9 |
-
import warnings
|
10 |
-
import PIL
|
11 |
-
from PIL import Image
|
12 |
-
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple
|
13 |
-
|
14 |
-
import gradio as gr
|
15 |
-
import torch
|
16 |
-
import argparse
|
17 |
-
import whisper
|
18 |
-
import numpy as np
|
19 |
-
|
20 |
-
from gradio import processing_utils
|
21 |
-
from modeling.BaseModel import BaseModel
|
22 |
-
from modeling import build_model
|
23 |
-
from utils.distributed import init_distributed
|
24 |
-
from utils.arguments import load_opt_from_config_files
|
25 |
-
from utils.constants import COCO_PANOPTIC_CLASSES
|
26 |
-
|
27 |
-
from demo.seem.tasks import *
|
28 |
-
|
29 |
-
def parse_option():
|
30 |
-
parser = argparse.ArgumentParser('SEEM Demo', add_help=False)
|
31 |
-
parser.add_argument('--conf_files', default="configs/seem/focall_unicl_lang_demo.yaml", metavar="FILE", help='path to config file', )
|
32 |
-
cfg = parser.parse_args()
|
33 |
-
return cfg
|
34 |
-
|
35 |
-
'''
|
36 |
-
build args
|
37 |
-
'''
|
38 |
-
cfg = parse_option()
|
39 |
-
opt = load_opt_from_config_files([cfg.conf_files])
|
40 |
-
opt = init_distributed(opt)
|
41 |
-
|
42 |
-
# META DATA
|
43 |
-
cur_model = 'None'
|
44 |
-
if 'focalt' in cfg.conf_files:
|
45 |
-
pretrained_pth = os.path.join("seem_focalt_v0.pt")
|
46 |
-
if not os.path.exists(pretrained_pth):
|
47 |
-
os.system("wget {}".format("https://huggingface.co/xdecoder/SEEM/resolve/main/seem_focalt_v0.pt"))
|
48 |
-
cur_model = 'Focal-T'
|
49 |
-
elif 'focal' in cfg.conf_files:
|
50 |
-
pretrained_pth = os.path.join("seem_focall_v0.pt")
|
51 |
-
if not os.path.exists(pretrained_pth):
|
52 |
-
os.system("wget {}".format("https://huggingface.co/xdecoder/SEEM/resolve/main/seem_focall_v0.pt"))
|
53 |
-
cur_model = 'Focal-L'
|
54 |
-
|
55 |
-
'''
|
56 |
-
build model
|
57 |
-
'''
|
58 |
-
model = BaseModel(opt, build_model(opt)).from_pretrained(pretrained_pth).eval().cuda()
|
59 |
-
with torch.no_grad():
|
60 |
-
model.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(COCO_PANOPTIC_CLASSES + ["background"], is_eval=True)
|
61 |
-
|
62 |
-
'''
|
63 |
-
audio
|
64 |
-
'''
|
65 |
-
audio = whisper.load_model("base")
|
66 |
-
|
67 |
-
@torch.no_grad()
|
68 |
-
def inference(image, task, *args, **kwargs):
|
69 |
-
with torch.autocast(device_type='cuda', dtype=torch.float16):
|
70 |
-
if 'Video' in task:
|
71 |
-
return interactive_infer_video(model, audio, image, task, *args, **kwargs)
|
72 |
-
else:
|
73 |
-
return interactive_infer_image(model, audio, image, task, *args, **kwargs)
|
74 |
-
|
75 |
-
class ImageMask(gr.components.Image):
|
76 |
-
"""
|
77 |
-
Sets: source="canvas", tool="sketch"
|
78 |
-
"""
|
79 |
-
|
80 |
-
is_template = True
|
81 |
-
|
82 |
-
def __init__(self, **kwargs):
|
83 |
-
super().__init__(source="upload", tool="sketch", interactive=True, **kwargs)
|
84 |
-
|
85 |
-
def preprocess(self, x):
|
86 |
-
return super().preprocess(x)
|
87 |
-
|
88 |
-
class Video(gr.components.Video):
|
89 |
-
"""
|
90 |
-
Sets: source="canvas", tool="sketch"
|
91 |
-
"""
|
92 |
-
|
93 |
-
is_template = True
|
94 |
-
|
95 |
-
def __init__(self, **kwargs):
|
96 |
-
super().__init__(source="upload", **kwargs)
|
97 |
-
|
98 |
-
def preprocess(self, x):
|
99 |
-
return super().preprocess(x)
|
100 |
-
|
101 |
-
|
102 |
-
'''
|
103 |
-
launch app
|
104 |
-
'''
|
105 |
-
title = "SEEM: Segment Everything Everywhere All At Once"
|
106 |
-
description = """
|
107 |
-
<div style="text-align: center; font-weight: bold;">
|
108 |
-
<span style="font-size: 18px" id="paper-info">
|
109 |
-
[<a href="https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once" target="_blank">GitHub</a>]
|
110 |
-
[<a href="https://arxiv.org/pdf/2304.06718.pdf" target="_blank">arXiv</a>]
|
111 |
-
</span>
|
112 |
-
</div>
|
113 |
-
<div style="text-align: left; font-weight: bold;">
|
114 |
-
<br>
|
115 |
-
🌪 Note: The current model is run on <span style="color:blue;">SEEM {}</span>, for <span style="color:blue;">best performance</span> refer to <a href="https://huggingface.co/spaces/xdecoder/SEEM" target="_blank"><span style="color:red;">our demo</span></a>.
|
116 |
-
</p>
|
117 |
-
</div>
|
118 |
-
""".format(cur_model)
|
119 |
-
|
120 |
-
'''Usage
|
121 |
-
Instructions:
|
122 |
-
🎈 Try our default examples first (Sketch is not automatically drawed on input and example image);
|
123 |
-
🎈 For video demo, it takes about 30-60s to process, please refresh if you meet an error on uploading;
|
124 |
-
🎈 Upload an image/video (If you want to use referred region of another image please check "Example" and upload another image in referring image panel);
|
125 |
-
🎈 Select at least one type of prompt of your choice (If you want to use referred region of another image please check "Example");
|
126 |
-
🎈 Remember to provide the actual prompt for each promt type you select, otherwise you will meet an error (e.g., rember to draw on the referring image);
|
127 |
-
🎈 Our model by default support the vocabulary of COCO 133 categories, others will be classified to 'others' or misclassifed.
|
128 |
-
'''
|
129 |
-
|
130 |
-
article = "The Demo is Run on SEEM-Tiny."
|
131 |
-
inputs = [ImageMask(label="[Stroke] Draw on Image",type="pil"), gr.inputs.CheckboxGroup(choices=["Stroke", "Example", "Text", "Audio", "Video", "Panoptic"], type="value", label="Interative Mode"), ImageMask(label="[Example] Draw on Referring Image",type="pil"), gr.Textbox(label="[Text] Referring Text"), gr.Audio(label="[Audio] Referring Audio", source="microphone", type="filepath"), gr.Video(label="[Video] Referring Video Segmentation",format="mp4",interactive=True)]
|
132 |
-
gr.Interface(
|
133 |
-
fn=inference,
|
134 |
-
inputs=inputs,
|
135 |
-
outputs=[
|
136 |
-
gr.outputs.Image(
|
137 |
-
type="pil",
|
138 |
-
label="Segmentation Results (COCO classes as label)"),
|
139 |
-
gr.Video(
|
140 |
-
label="Video Segmentation Results (COCO classes as label)", format="mp4"
|
141 |
-
),
|
142 |
-
],
|
143 |
-
examples=[
|
144 |
-
["demo/seem/examples/corgi1.webp", ["Text"], "demo/seem/examples/corgi2.jpg", "The corgi.", None, None],
|
145 |
-
["demo/seem/examples/river1.png", ["Text", "Audio"], "demo/seem/examples/river2.png", "The green trees.", "demo/seem/examples/river1.wav", None],
|
146 |
-
["demo/seem/examples/zebras1.jpg", ["Example"], "demo/seem/examples/zebras2.jpg", "", None, None],
|
147 |
-
["demo/seem/examples/fries1.png", ["Example"], "demo/seem/examples/fries2.png", "", None, None],
|
148 |
-
["demo/seem/examples/placeholder.png", ["Video"], "demo/seem/examples/ref_vase.JPG", "", None, "demo/seem/examples/vasedeck.mp4"],
|
149 |
-
],
|
150 |
-
title=title,
|
151 |
-
description=description,
|
152 |
-
article=article,
|
153 |
-
allow_flagging='never',
|
154 |
-
cache_examples=False,
|
155 |
-
).launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
demo/seem/examples/corgi1.webp
DELETED
Binary file (56.8 kB)
|
|
demo/seem/examples/corgi2.jpg
DELETED
Binary file (36.3 kB)
|
|
demo/seem/examples/fries1.png
DELETED
Git LFS Details
|
demo/seem/examples/fries2.png
DELETED
Git LFS Details
|
demo/seem/examples/minecraft1.jpg
DELETED
Git LFS Details
|
demo/seem/examples/placeholder.png
DELETED
Binary file (80.4 kB)
|
|
demo/seem/examples/ref_vase.JPG
DELETED
Git LFS Details
|
demo/seem/examples/river1.png
DELETED
Git LFS Details
|
demo/seem/examples/river1.wav
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:a71fa0c20c27f4ffe7567f437aec982877b5ccf34a7563d5603919bf6899a03a
|
3 |
-
size 397484
|
|
|
|
|
|
|
|
demo/seem/examples/river1_mask.png
DELETED
Binary file (4.78 kB)
|
|
demo/seem/examples/river2.png
DELETED
Git LFS Details
|
demo/seem/examples/vasedeck.mp4
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:726107c05e5837feb5c761714ef3eb2403b338392732ac10ff61969771cdd5a1
|
3 |
-
size 22498026
|
|
|
|
|
|
|
|
demo/seem/examples/zebras1.jpg
DELETED
Binary file (62.2 kB)
|
|
demo/seem/examples/zebras2.jpg
DELETED
Binary file (31.8 kB)
|
|
demo/seem/tasks/__init__.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
from .interactive import interactive_infer_video, interactive_infer_image
|
|
|
|
demo/seem/tasks/interactive.py
DELETED
@@ -1,268 +0,0 @@
|
|
1 |
-
# --------------------------------------------------------
|
2 |
-
# SEEM -- Segment Everything Everywhere All At Once
|
3 |
-
# Copyright (c) 2022 Microsoft
|
4 |
-
# Licensed under The MIT License [see LICENSE for details]
|
5 |
-
# Written by Xueyan Zou ([email protected])
|
6 |
-
# --------------------------------------------------------
|
7 |
-
|
8 |
-
import torch
|
9 |
-
import numpy as np
|
10 |
-
import torch.nn.functional as F
|
11 |
-
from PIL import Image
|
12 |
-
from torchvision import transforms
|
13 |
-
from utils.visualizer import Visualizer
|
14 |
-
from detectron2.utils.colormap import random_color
|
15 |
-
from detectron2.data import MetadataCatalog
|
16 |
-
from detectron2.structures import BitMasks
|
17 |
-
from modeling.language.loss import vl_similarity
|
18 |
-
from utils.constants import COCO_PANOPTIC_CLASSES
|
19 |
-
from detectron2.data.datasets.builtin_meta import COCO_CATEGORIES
|
20 |
-
|
21 |
-
import cv2
|
22 |
-
import os
|
23 |
-
import glob
|
24 |
-
import subprocess
|
25 |
-
from PIL import Image
|
26 |
-
import random
|
27 |
-
|
28 |
-
t = []
|
29 |
-
t.append(transforms.Resize(512, interpolation=Image.BICUBIC))
|
30 |
-
transform = transforms.Compose(t)
|
31 |
-
metadata = MetadataCatalog.get('coco_2017_train_panoptic')
|
32 |
-
all_classes = [name.replace('-other','').replace('-merged','') for name in COCO_PANOPTIC_CLASSES] + ["others"]
|
33 |
-
colors_list = [(np.array(color['color'])/255).tolist() for color in COCO_CATEGORIES] + [[1, 1, 1]]
|
34 |
-
|
35 |
-
def interactive_infer_image(model, audio_model, image, tasks, refimg=None, reftxt=None, audio_pth=None, video_pth=None):
|
36 |
-
image_ori = transform(image['image'])
|
37 |
-
mask_ori = image['mask']
|
38 |
-
width = image_ori.size[0]
|
39 |
-
height = image_ori.size[1]
|
40 |
-
image_ori = np.asarray(image_ori)
|
41 |
-
visual = Visualizer(image_ori, metadata=metadata)
|
42 |
-
images = torch.from_numpy(image_ori.copy()).permute(2,0,1).cuda()
|
43 |
-
|
44 |
-
# stroke_inimg = None
|
45 |
-
# stroke_refimg = None
|
46 |
-
|
47 |
-
data = {"image": images, "height": height, "width": width}
|
48 |
-
if len(tasks) == 0:
|
49 |
-
tasks = ["Panoptic"]
|
50 |
-
|
51 |
-
# inistalize task
|
52 |
-
model.model.task_switch['spatial'] = False
|
53 |
-
model.model.task_switch['visual'] = False
|
54 |
-
model.model.task_switch['grounding'] = False
|
55 |
-
model.model.task_switch['audio'] = False
|
56 |
-
|
57 |
-
example = None
|
58 |
-
if 'Example' in tasks:
|
59 |
-
model.model.task_switch['visual'] = True
|
60 |
-
model.model.task_switch['spatial'] = True
|
61 |
-
refimg_ori, refimg_mask = refimg['image'], refimg['mask']
|
62 |
-
refimg_ori = transform(refimg_ori)
|
63 |
-
_width = refimg_ori.size[0]
|
64 |
-
_height = refimg_ori.size[1]
|
65 |
-
refimg_ori = np.asarray(refimg_ori)
|
66 |
-
refimg_ori_np = refimg_ori.copy()
|
67 |
-
images = torch.from_numpy(refimg_ori.copy()).permute(2,0,1).cuda()
|
68 |
-
batched_inputs = [{'image': images, 'height': _height, 'width': _width, 'spatial_query':{}}]
|
69 |
-
|
70 |
-
refimg_mask = np.asarray(refimg_mask)[:,:,0:1].copy()
|
71 |
-
refimg_mask = torch.from_numpy(refimg_mask).permute(2,0,1)[None,]
|
72 |
-
refimg_mask = (F.interpolate(refimg_mask, (_height, _width), mode='bilinear') > 0)
|
73 |
-
batched_inputs[0]['spatial_query']['rand_shape'] = refimg_mask
|
74 |
-
outputs_refimg, img_shape = model.model.evaluate_referring_image(batched_inputs)
|
75 |
-
model.model.task_switch['spatial'] = False
|
76 |
-
data['visual'] = outputs_refimg
|
77 |
-
|
78 |
-
# overlay = refimg_mask[0,0].float().numpy()[:,:,None] * np.array([0,0,255])
|
79 |
-
# x = refimg_ori_np
|
80 |
-
# stroke_refimg = x * (1 - refimg_mask[0,0].float().numpy()[:,:,None]) + (x * refimg_mask[0,0].numpy()[:,:,None] * 0.2 + overlay * 0.8)
|
81 |
-
# stroke_refimg = Image.fromarray(stroke_refimg.astype(np.uint8))
|
82 |
-
|
83 |
-
stroke = None
|
84 |
-
if 'Stroke' in tasks:
|
85 |
-
model.model.task_switch['spatial'] = True
|
86 |
-
mask_ori = np.asarray(mask_ori)[:,:,0:1].copy()
|
87 |
-
mask_ori = torch.from_numpy(mask_ori).permute(2,0,1)[None,]
|
88 |
-
mask_ori = (F.interpolate(mask_ori, (height, width), mode='bilinear') > 0)
|
89 |
-
data['stroke'] = mask_ori
|
90 |
-
|
91 |
-
# overlay = mask_ori[0,0].float().numpy()[:,:,None] * np.array([0,255,0])
|
92 |
-
# x = image_ori
|
93 |
-
# stroke_inimg = x * (1 - mask_ori[0,0].float().numpy()[:,:,None]) + (x * mask_ori[0,0].numpy()[:,:,None] * 0.2 + overlay * 0.8)
|
94 |
-
# stroke_inimg = Image.fromarray(stroke_inimg.astype(np.uint8))
|
95 |
-
|
96 |
-
text = None
|
97 |
-
if 'Text' in tasks:
|
98 |
-
model.model.task_switch['grounding'] = True
|
99 |
-
data['text'] = [reftxt]
|
100 |
-
|
101 |
-
audio = None
|
102 |
-
if 'Audio' in tasks:
|
103 |
-
model.model.task_switch['audio'] = True
|
104 |
-
audio_result = audio_model.transcribe(audio_pth)
|
105 |
-
data['audio'] = [audio_result['text']]
|
106 |
-
|
107 |
-
batch_inputs = [data]
|
108 |
-
if 'Panoptic' in tasks:
|
109 |
-
model.model.metadata = metadata
|
110 |
-
results = model.model.evaluate(batch_inputs)
|
111 |
-
pano_seg = results[-1]['panoptic_seg'][0]
|
112 |
-
pano_seg_info = results[-1]['panoptic_seg'][1]
|
113 |
-
demo = visual.draw_panoptic_seg(pano_seg.cpu(), pano_seg_info) # rgb Image
|
114 |
-
res = demo.get_image()
|
115 |
-
return Image.fromarray(res), None
|
116 |
-
else:
|
117 |
-
results,image_size,extra = model.model.evaluate_demo(batch_inputs)
|
118 |
-
|
119 |
-
# If contians spatial use spatial:
|
120 |
-
if 'Stroke' in tasks:
|
121 |
-
v_emb = results['pred_maskembs']
|
122 |
-
s_emb = results['pred_pspatials']
|
123 |
-
pred_masks = results['pred_masks']
|
124 |
-
|
125 |
-
pred_logits = v_emb @ s_emb.transpose(1,2)
|
126 |
-
logits_idx_y = pred_logits[:,:,0].max(dim=1)[1]
|
127 |
-
logits_idx_x = torch.arange(len(logits_idx_y), device=logits_idx_y.device)
|
128 |
-
logits_idx = torch.stack([logits_idx_x, logits_idx_y]).tolist()
|
129 |
-
pred_masks_pos = pred_masks[logits_idx]
|
130 |
-
pred_class = results['pred_logits'][logits_idx].max(dim=-1)[1]
|
131 |
-
|
132 |
-
elif 'Example' in tasks:
|
133 |
-
v_emb = results['pred_maskembs']
|
134 |
-
s_emb = results['pred_pvisuals']
|
135 |
-
pred_masks = results['pred_masks']
|
136 |
-
|
137 |
-
pred_logits = v_emb @ s_emb.transpose(1,2)
|
138 |
-
logits_idx_y = pred_logits[:,:,0].max(dim=1)[1]
|
139 |
-
logits_idx_x = torch.arange(len(logits_idx_y), device=logits_idx_y.device)
|
140 |
-
logits_idx = torch.stack([logits_idx_x, logits_idx_y]).tolist()
|
141 |
-
pred_masks_pos = pred_masks[logits_idx]
|
142 |
-
pred_class = results['pred_logits'][logits_idx].max(dim=-1)[1]
|
143 |
-
|
144 |
-
elif 'Text' in tasks:
|
145 |
-
pred_masks = results['pred_masks'][0]
|
146 |
-
v_emb = results['pred_captions'][0]
|
147 |
-
t_emb = extra['grounding_class']
|
148 |
-
|
149 |
-
t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7)
|
150 |
-
v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)
|
151 |
-
|
152 |
-
temperature = model.model.sem_seg_head.predictor.lang_encoder.logit_scale
|
153 |
-
out_prob = vl_similarity(v_emb, t_emb, temperature=temperature)
|
154 |
-
|
155 |
-
matched_id = out_prob.max(0)[1]
|
156 |
-
pred_masks_pos = pred_masks[matched_id,:,:]
|
157 |
-
pred_class = results['pred_logits'][0][matched_id].max(dim=-1)[1]
|
158 |
-
|
159 |
-
elif 'Audio' in tasks:
|
160 |
-
pred_masks = results['pred_masks'][0]
|
161 |
-
v_emb = results['pred_captions'][0]
|
162 |
-
t_emb = extra['audio_class']
|
163 |
-
|
164 |
-
t_emb = t_emb / (t_emb.norm(dim=-1, keepdim=True) + 1e-7)
|
165 |
-
v_emb = v_emb / (v_emb.norm(dim=-1, keepdim=True) + 1e-7)
|
166 |
-
|
167 |
-
temperature = model.model.sem_seg_head.predictor.lang_encoder.logit_scale
|
168 |
-
out_prob = vl_similarity(v_emb, t_emb, temperature=temperature)
|
169 |
-
|
170 |
-
matched_id = out_prob.max(0)[1]
|
171 |
-
pred_masks_pos = pred_masks[matched_id,:,:]
|
172 |
-
pred_class = results['pred_logits'][0][matched_id].max(dim=-1)[1]
|
173 |
-
|
174 |
-
# interpolate mask to ori size
|
175 |
-
pred_masks_pos = (F.interpolate(pred_masks_pos[None,], image_size[-2:], mode='bilinear')[0,:,:data['height'],:data['width']] > 0.0).float().cpu().numpy()
|
176 |
-
texts = [all_classes[pred_class[0]]]
|
177 |
-
|
178 |
-
for idx, mask in enumerate(pred_masks_pos):
|
179 |
-
# color = random_color(rgb=True, maximum=1).astype(np.int32).tolist()
|
180 |
-
out_txt = texts[idx] if 'Text' not in tasks else reftxt
|
181 |
-
demo = visual.draw_binary_mask(mask, color=colors_list[pred_class[0]%133], text=out_txt)
|
182 |
-
res = demo.get_image()
|
183 |
-
torch.cuda.empty_cache()
|
184 |
-
# return Image.fromarray(res), stroke_inimg, stroke_refimg
|
185 |
-
return Image.fromarray(res), None
|
186 |
-
|
187 |
-
def interactive_infer_video(model, audio_model, image, tasks, refimg=None, reftxt=None, audio_pth=None, video_pth=None):
|
188 |
-
if 'Video' in tasks:
|
189 |
-
input_dir = video_pth.replace('.mp4', '')
|
190 |
-
input_name = input_dir.split('/')[-1]
|
191 |
-
random_number = str(random.randint(10000, 99999))
|
192 |
-
output_dir = input_dir + '_output'
|
193 |
-
output_name = output_dir.split('/')[-1]
|
194 |
-
output_file = video_pth.replace('.mp4', '_{}_output.mp4'.format(random_number))
|
195 |
-
frame_interval = 10
|
196 |
-
|
197 |
-
# Ensure output directory exists
|
198 |
-
if not os.path.exists(input_dir):
|
199 |
-
os.makedirs(input_dir)
|
200 |
-
|
201 |
-
if not os.path.exists(output_dir):
|
202 |
-
os.makedirs(output_dir)
|
203 |
-
|
204 |
-
# Build the FFmpeg command
|
205 |
-
ffmpeg_cmd = "ffmpeg -i {} -vf \"fps=5\" {}/%04d.png".format(video_pth, input_dir)
|
206 |
-
os.system(ffmpeg_cmd)
|
207 |
-
|
208 |
-
data = {}
|
209 |
-
model.model.task_switch['visual'] = True
|
210 |
-
model.model.task_switch['spatial'] = True
|
211 |
-
refimg_ori, refimg_mask = refimg['image'], refimg['mask']
|
212 |
-
refimg_ori = transform(refimg_ori)
|
213 |
-
_width = refimg_ori.size[0]
|
214 |
-
_height = refimg_ori.size[1]
|
215 |
-
refimg_ori = np.asarray(refimg_ori)
|
216 |
-
refimg_ori_np = refimg_ori.copy()
|
217 |
-
images = torch.from_numpy(refimg_ori.copy()).permute(2,0,1).cuda()
|
218 |
-
batched_inputs = [{'image': images, 'height': _height, 'width': _width, 'spatial_query':{}}]
|
219 |
-
|
220 |
-
refimg_mask = np.asarray(refimg_mask)[:,:,0:1].copy()
|
221 |
-
refimg_mask = torch.from_numpy(refimg_mask).permute(2,0,1)[None,]
|
222 |
-
refimg_mask = (F.interpolate(refimg_mask, (_height, _width), mode='bilinear') > 0)
|
223 |
-
batched_inputs[0]['spatial_query']['rand_shape'] = refimg_mask
|
224 |
-
outputs_refimg, img_shape = model.model.evaluate_referring_image(batched_inputs)
|
225 |
-
model.model.task_switch['visual'] = False
|
226 |
-
model.model.task_switch['spatial'] = False
|
227 |
-
data['visual'] = outputs_refimg
|
228 |
-
|
229 |
-
model.model.task_switch['visual'] = True
|
230 |
-
frame_pths = sorted(glob.glob(os.path.join(input_dir, '*.png')))
|
231 |
-
for frame_pth in frame_pths:
|
232 |
-
image_ori = transform(Image.open(frame_pth))
|
233 |
-
width = image_ori.size[0]
|
234 |
-
height = image_ori.size[1]
|
235 |
-
image_ori = np.asarray(image_ori)
|
236 |
-
visual = Visualizer(image_ori[:,:,::-1], metadata=metadata)
|
237 |
-
images = torch.from_numpy(image_ori.copy()).permute(2,0,1).cuda()
|
238 |
-
|
239 |
-
data.update({"image": images, "height": height, "width": width})
|
240 |
-
batch_inputs = [data]
|
241 |
-
results,image_size,extra = model.model.evaluate_demo(batch_inputs)
|
242 |
-
|
243 |
-
v_emb = results['pred_maskembs']
|
244 |
-
s_emb = results['pred_pvisuals']
|
245 |
-
pred_masks = results['pred_masks']
|
246 |
-
|
247 |
-
pred_logits = v_emb @ s_emb.transpose(1,2)
|
248 |
-
logits_idx_y = pred_logits[:,:,0].max(dim=1)[1]
|
249 |
-
logits_idx_x = torch.arange(len(logits_idx_y), device=logits_idx_y.device)
|
250 |
-
logits_idx = torch.stack([logits_idx_x, logits_idx_y]).tolist()
|
251 |
-
pred_masks_pos = pred_masks[logits_idx]
|
252 |
-
pred_class = results['pred_logits'][logits_idx].max(dim=-1)[1]
|
253 |
-
|
254 |
-
pred_masks_pos = (F.interpolate(pred_masks_pos[None,], image_size[-2:], mode='bilinear')[0,:,:data['height'],:data['width']] > 0.0).float().cpu().numpy()
|
255 |
-
texts = [all_classes[pred_class[0]]]
|
256 |
-
|
257 |
-
for idx, mask in enumerate(pred_masks_pos):
|
258 |
-
out_txt = texts[idx]
|
259 |
-
demo = visual.draw_binary_mask(mask, color=colors_list[pred_class[0]%133], text=out_txt)
|
260 |
-
|
261 |
-
res = demo.get_image()
|
262 |
-
output_pth = frame_pth.replace(input_name, output_name)
|
263 |
-
cv2.imwrite(output_pth, res)
|
264 |
-
|
265 |
-
ffmpeg_cmd = "ffmpeg -framerate 5 -pattern_type glob -i '{}/*.png' -c:v libx264 {}".format(output_dir, output_file)
|
266 |
-
os.system(ffmpeg_cmd)
|
267 |
-
|
268 |
-
return None, output_file
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|