# -------------------------------------------------------- # X-Decoder -- Generalized Decoding for Pixel, Image, and Language # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Xueyan Zou (xueyan@cs.wisc.edu) # -------------------------------------------------------- import os import sys import logging pth = '/'.join(sys.path[0].split('/')[:-1]) sys.path.insert(0, pth) from PIL import Image import numpy as np np.random.seed(1) import torch from torchvision import transforms from utils.arguments import load_opt_command from detectron2.data import MetadataCatalog from detectron2.utils.colormap import random_color from modeling.BaseModel import BaseModel from modeling import build_model from utils.visualizer import Visualizer from utils.distributed import init_distributed logger = logging.getLogger(__name__) def main(args=None): ''' Main execution point for PyLearn. ''' opt, cmdline_args = load_opt_command(args) if cmdline_args.user_dir: absolute_user_dir = os.path.abspath(cmdline_args.user_dir) opt['base_path'] = absolute_user_dir opt = init_distributed(opt) # META DATA pretrained_pth = os.path.join(opt['RESUME_FROM']) output_root = './output' image_pth = 'inference/images/street.jpg' model = BaseModel(opt, build_model(opt)).from_pretrained(pretrained_pth).eval().cuda() t = [] t.append(transforms.Resize(512, interpolation=Image.BICUBIC)) transform = transforms.Compose(t) thing_classes = ['car','person','traffic light', 'truck', 'motorcycle'] stuff_classes = ['building','sky','street','tree','rock','sidewalk'] thing_colors = [random_color(rgb=True, maximum=255).astype(np.int).tolist() for _ in range(len(thing_classes))] stuff_colors = [random_color(rgb=True, maximum=255).astype(np.int).tolist() for _ in range(len(stuff_classes))] thing_dataset_id_to_contiguous_id = {x:x for x in range(len(thing_classes))} stuff_dataset_id_to_contiguous_id = {x+len(thing_classes):x for x in range(len(stuff_classes))} MetadataCatalog.get("demo").set( thing_colors=thing_colors, thing_classes=thing_classes, thing_dataset_id_to_contiguous_id=thing_dataset_id_to_contiguous_id, stuff_colors=stuff_colors, stuff_classes=stuff_classes, stuff_dataset_id_to_contiguous_id=stuff_dataset_id_to_contiguous_id, ) model.model.sem_seg_head.predictor.lang_encoder.get_text_embeddings(thing_classes + stuff_classes + ["background"], is_eval=False) metadata = MetadataCatalog.get('demo') model.model.metadata = metadata model.model.sem_seg_head.num_classes = len(thing_classes + stuff_classes) with torch.no_grad(): image_ori = Image.open(image_pth).convert("RGB") width = image_ori.size[0] height = image_ori.size[1] image = transform(image_ori) image = np.asarray(image) image_ori = np.asarray(image_ori) images = torch.from_numpy(image.copy()).permute(2,0,1).cuda() batch_inputs = [{'image': images, 'height': height, 'width': width}] outputs = model.forward(batch_inputs) visual = Visualizer(image_ori, metadata=metadata) pano_seg = outputs[-1]['panoptic_seg'][0] pano_seg_info = outputs[-1]['panoptic_seg'][1] for i in range(len(pano_seg_info)): if pano_seg_info[i]['category_id'] in metadata.thing_dataset_id_to_contiguous_id.keys(): pano_seg_info[i]['category_id'] = metadata.thing_dataset_id_to_contiguous_id[pano_seg_info[i]['category_id']] else: pano_seg_info[i]['isthing'] = False pano_seg_info[i]['category_id'] = metadata.stuff_dataset_id_to_contiguous_id[pano_seg_info[i]['category_id']] demo = visual.draw_panoptic_seg(pano_seg.cpu(), pano_seg_info) # rgb Image if not os.path.exists(output_root): os.makedirs(output_root) demo.save(os.path.join(output_root, 'pano.png')) if __name__ == "__main__": main() sys.exit(0)