leukolook-api / app.py
skibi11's picture
Add a block to run the server
06db179 verified
raw
history blame
2.78 kB
# The Complete and Final app.py with both a UI and an API
from fastapi import FastAPI
from fastapi.responses import JSONResponse
from pydantic import BaseModel
import gradio as gr
import tensorflow as tf
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import os
import base64
import io
# --- 1. Load the Model ---
model = None
try:
model_path = hf_hub_download(
repo_id="skibi11/leukolook-eye-detector",
filename="MobileNetV1_best.keras"
)
model = tf.keras.models.load_model(model_path)
print("--- MODEL LOADED SUCCESSFULLY! ---")
except Exception as e:
print(f"--- ERROR LOADING MODEL: {e} ---")
model = None
# --- 2. Core Prediction Logic ---
def preprocess_image(img_pil):
img = img_pil.resize((224, 224))
img_array = np.array(img)
if img_array.ndim == 2: img_array = np.stack((img_array,)*3, axis=-1)
if img_array.shape[-1] == 4: img_array = img_array[..., :3]
img_array = img_array / 255.0
img_array = np.expand_dims(img_array, axis=0)
return img_array
def run_prediction(pil_image):
if model is None:
return {"error": "Model is not loaded on the server."}
processed_image = preprocess_image(pil_image)
prediction = model.predict(processed_image)
labels = [f"Class_{i}" for i in range(prediction.shape[1])]
confidences = {label: float(score) for label, score in zip(labels, prediction[0])}
return confidences
# --- 3. Create the FastAPI app ---
app = FastAPI()
# --- 4. Define the input data structure for our API endpoint ---
class PredictionRequest(BaseModel):
data: list[str]
# --- 5. Create our reliable API endpoint for the Render backend ---
@app.post("/api/predict/")
async def handle_api_prediction(request: PredictionRequest):
try:
base64_string = request.data[0].split(',', 1)[1]
image_bytes = base64.b64decode(base64_string)
pil_image = Image.open(io.BytesIO(image_bytes))
result_dict = run_prediction(pil_image)
return JSONResponse(content={"data": [result_dict]})
except Exception as e:
return JSONResponse(status_code=500, content={"error": str(e)})
# --- 6. Create the Gradio UI for the homepage ---
gradio_ui = gr.Interface(
fn=run_prediction,
inputs=gr.Image(type="pil", label="Upload an eye image to test"),
outputs=gr.JSON(label="Prediction Results"),
title="LeukoLook Eye Detector",
description="A demonstration of the LeukoLook detection model. This UI can be used for direct testing."
)
# --- 7. Mount the Gradio UI onto the FastAPI app's root ---
app = gr.mount_gradio_app(app, gradio_ui, path="/")
# --- 8. To run the server ---
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)