Spaces:
Running
Running
# Final robust app.py for your Hugging Face Space | |
import gradio as gr | |
import tensorflow as tf | |
from huggingface_hub import hf_hub_download | |
import numpy as np | |
from PIL import Image | |
import os | |
# --- 1. Load the Model --- | |
model = None | |
try: | |
model_path = hf_hub_download( | |
repo_id="skibi11/leukolook-eye-detector", | |
filename="MobileNetV1_best.keras" | |
) | |
model = tf.keras.models.load_model(model_path) | |
print("--- MODEL LOADED SUCCESSFULLY! ---") | |
except Exception as e: | |
print(f"--- ERROR LOADING MODEL: {e} ---") | |
raise gr.Error(f"Failed to load model: {e}") | |
# --- 2. Pre-processing Logic --- | |
def preprocess_image(img_pil): | |
img = img_pil.resize((224, 224)) | |
img_array = np.array(img) | |
if img_array.ndim == 2: | |
img_array = np.stack((img_array,)*3, axis=-1) | |
if img_array.shape[-1] == 4: | |
img_array = img_array[..., :3] | |
img_array = img_array / 255.0 | |
img_array = np.expand_dims(img_array, axis=0) | |
return img_array | |
# --- 3. Prediction Logic --- | |
def predict(image_from_gradio): | |
if not isinstance(image_from_gradio, np.ndarray): | |
return {"error": "Invalid input type. Expected an image."} | |
try: | |
pil_image = Image.fromarray(image_from_gradio) | |
processed_image = preprocess_image(pil_image) | |
prediction = model.predict(processed_image) | |
labels = [f"Class_{i}" for i in range(prediction.shape[1])] | |
confidences = {label: float(score) for label, score in zip(labels, prediction[0])} | |
return confidences | |
except Exception as e: | |
raise gr.Error(f"Error during prediction: {e}") | |
# --- 4. Create Gradio Interface using gr.Blocks for stability --- | |
with gr.Blocks() as demo: | |
gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type="numpy"), | |
outputs=gr.JSON(), | |
api_name="predict" | |
) | |
demo.launch() |