Spaces:
Running
Running
updated with UI
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
# The Final app.py
|
2 |
|
3 |
from fastapi import FastAPI
|
4 |
from fastapi.responses import JSONResponse
|
@@ -12,7 +12,7 @@ import os
|
|
12 |
import base64
|
13 |
import io
|
14 |
|
15 |
-
# --- 1. Load the Model
|
16 |
model = None
|
17 |
try:
|
18 |
model_path = hf_hub_download(
|
@@ -23,9 +23,9 @@ try:
|
|
23 |
print("--- MODEL LOADED SUCCESSFULLY! ---")
|
24 |
except Exception as e:
|
25 |
print(f"--- ERROR LOADING MODEL: {e} ---")
|
26 |
-
model = None
|
27 |
|
28 |
-
# --- 2. Prediction Logic
|
29 |
def preprocess_image(img_pil):
|
30 |
img = img_pil.resize((224, 224))
|
31 |
img_array = np.array(img)
|
@@ -38,7 +38,7 @@ def preprocess_image(img_pil):
|
|
38 |
def run_prediction(pil_image):
|
39 |
if model is None:
|
40 |
return {"error": "Model is not loaded on the server."}
|
41 |
-
|
42 |
processed_image = preprocess_image(pil_image)
|
43 |
prediction = model.predict(processed_image)
|
44 |
labels = [f"Class_{i}" for i in range(prediction.shape[1])]
|
@@ -48,30 +48,30 @@ def run_prediction(pil_image):
|
|
48 |
# --- 3. Create the FastAPI app ---
|
49 |
app = FastAPI()
|
50 |
|
51 |
-
# --- 4. Define the input data structure for our
|
52 |
class PredictionRequest(BaseModel):
|
53 |
data: list[str]
|
54 |
|
55 |
-
# --- 5. Create our
|
56 |
@app.post("/api/predict/")
|
57 |
-
async def
|
58 |
try:
|
59 |
-
# Get the Base64 string from the JSON payload
|
60 |
base64_string = request.data[0].split(',', 1)[1]
|
61 |
image_bytes = base64.b64decode(base64_string)
|
62 |
pil_image = Image.open(io.BytesIO(image_bytes))
|
63 |
-
|
64 |
-
# Run the prediction
|
65 |
result_dict = run_prediction(pil_image)
|
66 |
-
|
67 |
-
# Return the result in the same format Gradio does
|
68 |
return JSONResponse(content={"data": [result_dict]})
|
69 |
-
|
70 |
except Exception as e:
|
71 |
return JSONResponse(status_code=500, content={"error": str(e)})
|
72 |
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
1 |
+
# The Complete and Final app.py with both a UI and an API
|
2 |
|
3 |
from fastapi import FastAPI
|
4 |
from fastapi.responses import JSONResponse
|
|
|
12 |
import base64
|
13 |
import io
|
14 |
|
15 |
+
# --- 1. Load the Model ---
|
16 |
model = None
|
17 |
try:
|
18 |
model_path = hf_hub_download(
|
|
|
23 |
print("--- MODEL LOADED SUCCESSFULLY! ---")
|
24 |
except Exception as e:
|
25 |
print(f"--- ERROR LOADING MODEL: {e} ---")
|
26 |
+
model = None
|
27 |
|
28 |
+
# --- 2. Core Prediction Logic ---
|
29 |
def preprocess_image(img_pil):
|
30 |
img = img_pil.resize((224, 224))
|
31 |
img_array = np.array(img)
|
|
|
38 |
def run_prediction(pil_image):
|
39 |
if model is None:
|
40 |
return {"error": "Model is not loaded on the server."}
|
41 |
+
|
42 |
processed_image = preprocess_image(pil_image)
|
43 |
prediction = model.predict(processed_image)
|
44 |
labels = [f"Class_{i}" for i in range(prediction.shape[1])]
|
|
|
48 |
# --- 3. Create the FastAPI app ---
|
49 |
app = FastAPI()
|
50 |
|
51 |
+
# --- 4. Define the input data structure for our API endpoint ---
|
52 |
class PredictionRequest(BaseModel):
|
53 |
data: list[str]
|
54 |
|
55 |
+
# --- 5. Create our reliable API endpoint for the Render backend ---
|
56 |
@app.post("/api/predict/")
|
57 |
+
async def handle_api_prediction(request: PredictionRequest):
|
58 |
try:
|
|
|
59 |
base64_string = request.data[0].split(',', 1)[1]
|
60 |
image_bytes = base64.b64decode(base64_string)
|
61 |
pil_image = Image.open(io.BytesIO(image_bytes))
|
|
|
|
|
62 |
result_dict = run_prediction(pil_image)
|
|
|
|
|
63 |
return JSONResponse(content={"data": [result_dict]})
|
|
|
64 |
except Exception as e:
|
65 |
return JSONResponse(status_code=500, content={"error": str(e)})
|
66 |
|
67 |
+
# --- 6. Create the Gradio UI for the homepage ---
|
68 |
+
gradio_ui = gr.Interface(
|
69 |
+
fn=run_prediction,
|
70 |
+
inputs=gr.Image(type="pil", label="Upload an eye image to test"),
|
71 |
+
outputs=gr.JSON(label="Prediction Results"),
|
72 |
+
title="LeukoLook Eye Detector",
|
73 |
+
description="A demonstration of the LeukoLook detection model. This UI can be used for direct testing."
|
74 |
+
)
|
75 |
|
76 |
+
# --- 7. Mount the Gradio UI onto the FastAPI app's root ---
|
77 |
+
app = gr.mount_gradio_app(app, gradio_ui, path="/")
|
|