skibi11 commited on
Commit
2d599b6
·
verified ·
1 Parent(s): 0550be8

removed enhance_image_unsharp_mask function

Browse files
Files changed (1) hide show
  1. app.py +22 -39
app.py CHANGED
@@ -1,5 +1,4 @@
1
  # Final, Complete, and Working app.py for Hugging Face Space
2
-
3
  import os
4
  import cv2
5
  import tempfile
@@ -18,6 +17,7 @@ import gradio as gr
18
 
19
  # --- 1. Configuration and Model Loading ---
20
  ROBOFLOW_API_KEY = os.environ.get("ROBOFLOW_API_KEY")
 
21
  CLIENT_FACE = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY)
22
  CLIENT_EYES = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY)
23
  CLIENT_IRIS = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY)
@@ -32,9 +32,8 @@ except Exception as e:
32
  raise RuntimeError(f"Could not load leukocoria model: {e}")
33
 
34
  # --- 2. All Helper Functions ---
35
- def enhance_image_unsharp_mask(image, strength=0.5, radius=5):
36
- blur = cv2.GaussianBlur(image, (radius, radius), 0)
37
- return cv2.addWeighted(image, 1.0 + strength, blur, -strength, 0)
38
 
39
  def detect_faces_roboflow(image_path):
40
  return CLIENT_FACE.infer(image_path, model_id="face-detector-v4liw/2").get("predictions", [])
@@ -52,41 +51,32 @@ def detect_eyes_roboflow(image_path, raw_image):
52
  crop = raw_image[y1:y2, x1:x2]
53
  if crop.size > 0:
54
  crops.append(crop)
55
- # On success, return the crops and None for the error message
56
  return crops, None
57
  except Exception as e:
58
- # If Roboflow fails, return an empty list and the error message
59
  print(f"Error in Roboflow eye detection: {e}")
60
  return [], str(e)
61
 
62
- # In app.py, replace the existing function with this one
63
-
64
  def get_largest_iris_prediction(eye_crop):
65
  "Calls Roboflow to find the largest iris using a temporary file for reliability."
66
-
67
- # --- NEW: Enhance the eye crop before saving it ---
68
- enhanced_eye_crop = enhance_image_unsharp_mask(eye_crop)
69
-
70
  with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp:
71
- # Save the ENHANCED version, not the original
72
- cv2.imwrite(tmp.name, enhanced_eye_crop)
73
  temp_iris_path = tmp.name
74
-
75
  try:
76
- # Use the file path for inference, which is more robust
77
  resp = CLIENT_IRIS.infer(temp_iris_path, model_id="iris_120_set/7")
78
  preds = resp.get("predictions", [])
79
  return max(preds, key=lambda p: p["width"] * p["height"]) if preds else None
80
  finally:
81
- # Ensure the temporary file is always deleted
82
  os.remove(temp_iris_path)
83
 
84
  def run_leukocoria_prediction(iris_crop):
85
  if leuko_model is None: return {"error": "Leukocoria model not loaded"}, 0.0
 
86
  img_pil = Image.fromarray(cv2.cvtColor(iris_crop, cv2.COLOR_BGR2RGB))
87
- enh = enhance_image_unsharp_mask(np.array(img_pil))
88
- enh_rs = cv2.resize(enh, (224, 224))
89
- img_array = np.array(enh_rs) / 255.0
 
90
  img_array = np.expand_dims(img_array, axis=0)
91
  prediction = leuko_model.predict(img_array)
92
  confidence = float(prediction[0][0])
@@ -102,22 +92,18 @@ async def full_detection_pipeline(image: UploadFile = File(...)):
102
  contents = await image.read()
103
  tmp.write(contents)
104
  temp_image_path = tmp.name
105
-
106
  try:
107
  raw_image = cv2.imread(temp_image_path)
108
  if raw_image is None:
109
  return JSONResponse(status_code=400, content={"error": "Could not read uploaded image."})
110
-
111
  if not detect_faces_roboflow(temp_image_path):
112
  return JSONResponse(status_code=400, content={"error": "No face detected."})
113
-
114
  image_to_process = raw_image
115
  was_mirrored = False
116
 
117
  print("--- 1. Attempting detection on original image... ---")
118
  eye_crops, error_msg = detect_eyes_roboflow(temp_image_path, image_to_process)
119
  print(f"--- 2. Found {len(eye_crops)} eyes in original image. ---")
120
-
121
  if len(eye_crops) != 2:
122
  print("--- 3. Original failed. Attempting detection on mirrored image... ---")
123
  mirrored_image = cv2.flip(raw_image, 1)
@@ -132,16 +118,16 @@ async def full_detection_pipeline(image: UploadFile = File(...)):
132
  print(f"--- 4. Found {len(eye_crops)} eyes in mirrored image. ---")
133
  finally:
134
  os.remove(temp_mirrored_image_path)
135
-
136
  if error_msg or len(eye_crops) != 2:
137
  return JSONResponse(
138
  status_code=400,
139
  content={"error": "Could not detect exactly two eyes. Please try another photo."}
140
  )
141
-
142
  initial_boxes = [cv2.boundingRect(cv2.cvtColor(c, cv2.COLOR_BGR2GRAY)) for c in eye_crops]
143
  print(f"--- 5. Initial eye coordinates (x,y,w,h): {initial_boxes} ---")
144
-
145
  eye_crops.sort(key=lambda c: cv2.boundingRect(cv2.cvtColor(c, cv2.COLOR_BGR2GRAY))[0])
146
 
147
  sorted_boxes = [cv2.boundingRect(cv2.cvtColor(c, cv2.COLOR_BGR2GRAY)) for c in eye_crops]
@@ -152,7 +138,7 @@ async def full_detection_pipeline(image: UploadFile = File(...)):
152
  eye_crops.reverse()
153
  reversed_boxes = [cv2.boundingRect(cv2.cvtColor(c, cv2.COLOR_BGR2GRAY)) for c in eye_crops]
154
  print(f"--- 8. Reversed eye coordinates (x,y,w,h): {reversed_boxes} ---")
155
-
156
  flags = {}
157
  eye_images_b64 = {}
158
  for i, eye_crop in enumerate(eye_crops):
@@ -162,7 +148,7 @@ async def full_detection_pipeline(image: UploadFile = File(...)):
162
  is_success, buffer = cv2.imencode(".jpg", eye_crop)
163
  if is_success:
164
  eye_images_b64[side] = "data:image/jpeg;base64," + base64.b64encode(buffer).decode("utf-8")
165
-
166
  pred = get_largest_iris_prediction(eye_crop)
167
  if pred:
168
  x1, y1 = int(pred['x'] - pred['width'] / 2), int(pred['y'] - pred['height'] / 2)
@@ -172,27 +158,24 @@ async def full_detection_pipeline(image: UploadFile = File(...)):
172
  flags[side] = has_leuko
173
  else:
174
  flags[side] = None
175
-
176
- # --- THIS BLOCK IS NOW CORRECTLY UN-INDENTED ---
177
- # It runs AFTER the 'for' loop is complete.
178
  print("--- 10. Final generated flags:", flags, "---")
179
 
180
  is_success_main, buffer_main = cv2.imencode(".jpg", image_to_process)
181
  analyzed_image_b64 = ""
182
  if is_success_main:
183
  analyzed_image_b64 = "data:image/jpeg;base64," + base64.b64encode(buffer_main).decode("utf-8")
184
-
185
  return JSONResponse(content={
186
  "leukocoria": flags,
187
  "warnings": [],
188
  "two_eyes": eye_images_b64,
189
  "analyzed_image": analyzed_image_b64
190
  })
191
-
192
  finally:
193
  os.remove(temp_image_path)
194
-
195
- # --- 4. Create and Mount the Gradio UI for a professional homepage ---
196
  def gradio_wrapper(image_array):
197
  """A wrapper function to call our own FastAPI endpoint from the Gradio UI."""
198
  try:
@@ -200,8 +183,9 @@ def gradio_wrapper(image_array):
200
  with io.BytesIO() as buffer:
201
  pil_image.save(buffer, format="JPEG")
202
  files = {'image': ('image.jpg', buffer.getvalue(), 'image/jpeg')}
 
203
  response = requests.post("http://127.0.0.1:7860/detect/", files=files)
204
-
205
  if response.status_code == 200:
206
  return response.json()
207
  else:
@@ -214,8 +198,7 @@ gradio_ui = gr.Interface(
214
  inputs=gr.Image(type="numpy", label="Upload an eye image to test the full pipeline"),
215
  outputs=gr.JSON(label="Analysis Results"),
216
  title="LeukoLook Eye Detector",
217
- description="A demonstration of the LeukoLook detection model pipeline."
218
- )
219
 
220
  app = gr.mount_gradio_app(app, gradio_ui, path="/")
221
 
 
1
  # Final, Complete, and Working app.py for Hugging Face Space
 
2
  import os
3
  import cv2
4
  import tempfile
 
17
 
18
  # --- 1. Configuration and Model Loading ---
19
  ROBOFLOW_API_KEY = os.environ.get("ROBOFLOW_API_KEY")
20
+
21
  CLIENT_FACE = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY)
22
  CLIENT_EYES = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY)
23
  CLIENT_IRIS = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY)
 
32
  raise RuntimeError(f"Could not load leukocoria model: {e}")
33
 
34
  # --- 2. All Helper Functions ---
35
+
36
+ # NOTE: The 'enhance_image_unsharp_mask' function has been removed.
 
37
 
38
  def detect_faces_roboflow(image_path):
39
  return CLIENT_FACE.infer(image_path, model_id="face-detector-v4liw/2").get("predictions", [])
 
51
  crop = raw_image[y1:y2, x1:x2]
52
  if crop.size > 0:
53
  crops.append(crop)
 
54
  return crops, None
55
  except Exception as e:
 
56
  print(f"Error in Roboflow eye detection: {e}")
57
  return [], str(e)
58
 
 
 
59
  def get_largest_iris_prediction(eye_crop):
60
  "Calls Roboflow to find the largest iris using a temporary file for reliability."
 
 
 
 
61
  with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp:
62
+ # Save the original eye crop, not an enhanced version
63
+ cv2.imwrite(tmp.name, eye_crop)
64
  temp_iris_path = tmp.name
 
65
  try:
 
66
  resp = CLIENT_IRIS.infer(temp_iris_path, model_id="iris_120_set/7")
67
  preds = resp.get("predictions", [])
68
  return max(preds, key=lambda p: p["width"] * p["height"]) if preds else None
69
  finally:
 
70
  os.remove(temp_iris_path)
71
 
72
  def run_leukocoria_prediction(iris_crop):
73
  if leuko_model is None: return {"error": "Leukocoria model not loaded"}, 0.0
74
+ # Convert crop to PIL Image
75
  img_pil = Image.fromarray(cv2.cvtColor(iris_crop, cv2.COLOR_BGR2RGB))
76
+ # Resize the original image array
77
+ img_resized = cv2.resize(np.array(img_pil), (224, 224))
78
+ # Normalize and expand dimensions for the model
79
+ img_array = np.array(img_resized) / 255.0
80
  img_array = np.expand_dims(img_array, axis=0)
81
  prediction = leuko_model.predict(img_array)
82
  confidence = float(prediction[0][0])
 
92
  contents = await image.read()
93
  tmp.write(contents)
94
  temp_image_path = tmp.name
 
95
  try:
96
  raw_image = cv2.imread(temp_image_path)
97
  if raw_image is None:
98
  return JSONResponse(status_code=400, content={"error": "Could not read uploaded image."})
 
99
  if not detect_faces_roboflow(temp_image_path):
100
  return JSONResponse(status_code=400, content={"error": "No face detected."})
 
101
  image_to_process = raw_image
102
  was_mirrored = False
103
 
104
  print("--- 1. Attempting detection on original image... ---")
105
  eye_crops, error_msg = detect_eyes_roboflow(temp_image_path, image_to_process)
106
  print(f"--- 2. Found {len(eye_crops)} eyes in original image. ---")
 
107
  if len(eye_crops) != 2:
108
  print("--- 3. Original failed. Attempting detection on mirrored image... ---")
109
  mirrored_image = cv2.flip(raw_image, 1)
 
118
  print(f"--- 4. Found {len(eye_crops)} eyes in mirrored image. ---")
119
  finally:
120
  os.remove(temp_mirrored_image_path)
121
+
122
  if error_msg or len(eye_crops) != 2:
123
  return JSONResponse(
124
  status_code=400,
125
  content={"error": "Could not detect exactly two eyes. Please try another photo."}
126
  )
127
+
128
  initial_boxes = [cv2.boundingRect(cv2.cvtColor(c, cv2.COLOR_BGR2GRAY)) for c in eye_crops]
129
  print(f"--- 5. Initial eye coordinates (x,y,w,h): {initial_boxes} ---")
130
+
131
  eye_crops.sort(key=lambda c: cv2.boundingRect(cv2.cvtColor(c, cv2.COLOR_BGR2GRAY))[0])
132
 
133
  sorted_boxes = [cv2.boundingRect(cv2.cvtColor(c, cv2.COLOR_BGR2GRAY)) for c in eye_crops]
 
138
  eye_crops.reverse()
139
  reversed_boxes = [cv2.boundingRect(cv2.cvtColor(c, cv2.COLOR_BGR2GRAY)) for c in eye_crops]
140
  print(f"--- 8. Reversed eye coordinates (x,y,w,h): {reversed_boxes} ---")
141
+
142
  flags = {}
143
  eye_images_b64 = {}
144
  for i, eye_crop in enumerate(eye_crops):
 
148
  is_success, buffer = cv2.imencode(".jpg", eye_crop)
149
  if is_success:
150
  eye_images_b64[side] = "data:image/jpeg;base64," + base64.b64encode(buffer).decode("utf-8")
151
+
152
  pred = get_largest_iris_prediction(eye_crop)
153
  if pred:
154
  x1, y1 = int(pred['x'] - pred['width'] / 2), int(pred['y'] - pred['height'] / 2)
 
158
  flags[side] = has_leuko
159
  else:
160
  flags[side] = None
161
+
 
 
162
  print("--- 10. Final generated flags:", flags, "---")
163
 
164
  is_success_main, buffer_main = cv2.imencode(".jpg", image_to_process)
165
  analyzed_image_b64 = ""
166
  if is_success_main:
167
  analyzed_image_b64 = "data:image/jpeg;base64," + base64.b64encode(buffer_main).decode("utf-8")
168
+
169
  return JSONResponse(content={
170
  "leukocoria": flags,
171
  "warnings": [],
172
  "two_eyes": eye_images_b64,
173
  "analyzed_image": analyzed_image_b64
174
  })
 
175
  finally:
176
  os.remove(temp_image_path)
177
+
178
+ # --- 4. Create and Mount the Gradio UI ---
179
  def gradio_wrapper(image_array):
180
  """A wrapper function to call our own FastAPI endpoint from the Gradio UI."""
181
  try:
 
183
  with io.BytesIO() as buffer:
184
  pil_image.save(buffer, format="JPEG")
185
  files = {'image': ('image.jpg', buffer.getvalue(), 'image/jpeg')}
186
+ # The URL points to the local FastAPI server running within the Hugging Face Space
187
  response = requests.post("http://127.0.0.1:7860/detect/", files=files)
188
+
189
  if response.status_code == 200:
190
  return response.json()
191
  else:
 
198
  inputs=gr.Image(type="numpy", label="Upload an eye image to test the full pipeline"),
199
  outputs=gr.JSON(label="Analysis Results"),
200
  title="LeukoLook Eye Detector",
201
+ description="A demonstration of the LeukoLook detection model pipeline.")
 
202
 
203
  app = gr.mount_gradio_app(app, gradio_ui, path="/")
204