skibi11 commited on
Commit
4611e20
·
verified ·
1 Parent(s): 333bd96

included the Roboflow calls and image manipulation logic

Browse files
Files changed (1) hide show
  1. app.py +118 -53
app.py CHANGED
@@ -1,82 +1,147 @@
1
- # The Complete and Final app.py with both a UI and an API
2
 
3
- from fastapi import FastAPI
 
 
 
 
 
 
 
4
  from fastapi.responses import JSONResponse
5
- from pydantic import BaseModel
6
  import gradio as gr
7
  import tensorflow as tf
8
  from huggingface_hub import hf_hub_download
9
- import numpy as np
10
- from PIL import Image
11
- import os
12
- import base64
13
- import io
14
 
15
- # --- 1. Load the Model ---
 
 
 
 
 
 
16
  model = None
17
  try:
18
- model_path = hf_hub_download(
19
- repo_id="skibi11/leukolook-eye-detector",
20
- filename="MobileNetV1_best.keras"
21
- )
22
  model = tf.keras.models.load_model(model_path)
23
  print("--- MODEL LOADED SUCCESSFULLY! ---")
24
  except Exception as e:
25
- print(f"--- ERROR LOADING MODEL: {e} ---")
26
- model = None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
- # --- 2. Core Prediction Logic ---
29
- def preprocess_image(img_pil):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  img = img_pil.resize((224, 224))
31
- img_array = np.array(img)
32
- if img_array.ndim == 2: img_array = np.stack((img_array,)*3, axis=-1)
33
- if img_array.shape[-1] == 4: img_array = img_array[..., :3]
34
- img_array = img_array / 255.0
35
  img_array = np.expand_dims(img_array, axis=0)
36
- return img_array
37
-
38
- def run_prediction(pil_image):
39
- if model is None:
40
- return {"error": "Model is not loaded on the server."}
41
-
42
- processed_image = preprocess_image(pil_image)
43
- prediction = model.predict(processed_image)
44
- labels = [f"Class_{i}" for i in range(prediction.shape[1])]
45
- confidences = {label: float(score) for label, score in zip(labels, prediction[0])}
46
- return confidences
47
-
48
- # --- 3. Create the FastAPI app ---
49
  app = FastAPI()
50
 
51
- # --- 4. Define the input data structure for our API endpoint ---
52
- class PredictionRequest(BaseModel):
53
- data: list[str]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
 
55
- # --- 5. Create our reliable API endpoint for the Render backend ---
56
- @app.post("/api/predict/")
57
- async def handle_api_prediction(request: PredictionRequest):
 
58
  try:
59
- base64_string = request.data[0].split(',', 1)[1]
60
- image_bytes = base64.b64decode(base64_string)
61
- pil_image = Image.open(io.BytesIO(image_bytes))
62
- result_dict = run_prediction(pil_image)
63
- return JSONResponse(content={"data": [result_dict]})
 
 
 
 
 
 
 
 
 
 
 
 
 
64
  except Exception as e:
65
- return JSONResponse(status_code=500, content={"error": str(e)})
66
 
67
- # --- 6. Create the Gradio UI for the homepage ---
68
  gradio_ui = gr.Interface(
69
- fn=run_prediction,
70
- inputs=gr.Image(type="pil", label="Upload an eye image to test"),
71
  outputs=gr.JSON(label="Prediction Results"),
72
  title="LeukoLook Eye Detector",
73
- description="A demonstration of the LeukoLook detection model. This UI can be used for direct testing."
74
  )
75
 
76
- # --- 7. Mount the Gradio UI onto the FastAPI app's root ---
77
  app = gr.mount_gradio_app(app, gradio_ui, path="/")
78
 
79
- # --- 8. To run the server ---
80
  if __name__ == "__main__":
81
- import uvicorn
82
  uvicorn.run(app, host="0.0.0.0", port=7860)
 
1
+ # The Complete and Final app.py for Hugging Face Space
2
 
3
+ import os
4
+ import cv2
5
+ import tempfile
6
+ import numpy as np
7
+ import uvicorn
8
+ from PIL import Image
9
+ from inference_sdk import InferenceHTTPClient
10
+ from fastapi import FastAPI, File, UploadFile
11
  from fastapi.responses import JSONResponse
 
12
  import gradio as gr
13
  import tensorflow as tf
14
  from huggingface_hub import hf_hub_download
 
 
 
 
 
15
 
16
+ # --- 1. Configuration and Model Loading ---
17
+ # Note: Ensure ROBOFLOW_API_KEY is set as a secret in your Space settings
18
+ ROBOFLOW_API_KEY = os.environ.get("ROBOFLOW_API_KEY")
19
+ CLIENT_FACE = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY)
20
+ CLIENT_EYES = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY)
21
+ CLIENT_IRIS = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY)
22
+
23
  model = None
24
  try:
25
+ model_path = hf_hub_download("skibi11/leukolook-eye-detector", "MobileNetV1_best.keras")
 
 
 
26
  model = tf.keras.models.load_model(model_path)
27
  print("--- MODEL LOADED SUCCESSFULLY! ---")
28
  except Exception as e:
29
+ print(f"--- ERROR LOADING LEUKOCORIA MODEL: {e} ---")
30
+ raise RuntimeError(f"Could not load leukocoria model: {e}")
31
+
32
+ # --- 2. All Helper Functions ---
33
+ def detect_faces_roboflow(image_path):
34
+ """Calls Roboflow to find faces in the image."""
35
+ resp = CLIENT_FACE.infer(image_path, model_id="face-detector-v4liw/2")
36
+ return resp.get("predictions", [])
37
+
38
+ def detect_eyes_roboflow(image_path):
39
+ """Calls Roboflow to find eyes and returns cropped images of them."""
40
+ resp = CLIENT_EYES.infer(image_path, model_id="eye-detection-kso3d/3")
41
+ raw_image = cv2.imread(image_path)
42
+ if raw_image is None: return [], "Could not read image"
43
+ eye_crops = []
44
+ for p in resp.get("predictions", []):
45
+ x1 = int(p['x'] - p['width'] / 2)
46
+ y1 = int(p['y'] - p['height'] / 2)
47
+ x2 = int(p['x'] + p['width'] / 2)
48
+ y2 = int(p['y'] + p['height'] / 2)
49
+ eye_crops.append(raw_image[y1:y2, x1:x2])
50
+ return eye_crops, None
51
 
52
+ def detect_iris_roboflow(eye_crop):
53
+ """Calls Roboflow to find the largest iris in an eye crop."""
54
+ is_success, buffer = cv2.imencode(".jpg", eye_crop)
55
+ if not is_success: return None
56
+ resp = CLIENT_IRIS.infer(data=buffer, model_id="iris_120_set/7")
57
+ preds = resp.get("predictions", [])
58
+ if not preds: return None
59
+ largest = max(preds, key=lambda p: p["width"] * p["height"])
60
+ x1, y1 = int(largest['x'] - largest['width'] / 2), int(largest['y'] - largest['height'] / 2)
61
+ x2, y2 = int(largest['x'] + largest['width'] / 2), int(largest['y'] + largest['height'] / 2)
62
+ return eye_crop[y1:y2, x1:x2]
63
+
64
+ def run_leukocoria_prediction(iris_crop):
65
+ """Runs the loaded TensorFlow model to predict leukocoria."""
66
+ if model is None: return {"error": "Leukocoria model not loaded"}
67
+ img_pil = Image.fromarray(cv2.cvtColor(iris_crop, cv2.COLOR_BGR2RGB))
68
  img = img_pil.resize((224, 224))
69
+ img_array = np.array(img) / 255.0
 
 
 
70
  img_array = np.expand_dims(img_array, axis=0)
71
+ prediction = model.predict(img_array)
72
+ return {f"Class_{i}": float(score) for i, score in enumerate(prediction[0])}
73
+
74
+ # --- 3. Create the FastAPI App and Main Endpoint ---
 
 
 
 
 
 
 
 
 
75
  app = FastAPI()
76
 
77
+ @app.post("/api/detect/")
78
+ async def full_detection_pipeline(image: UploadFile = File(...)):
79
+ """The main API endpoint that runs the full detection pipeline."""
80
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp:
81
+ tmp.write(await image.read())
82
+ temp_image_path = tmp.name
83
+
84
+ try:
85
+ if not detect_faces_roboflow(temp_image_path):
86
+ return JSONResponse(status_code=400, content={"error": "No face detected."})
87
+
88
+ eye_crops, error_msg = detect_eyes_roboflow(temp_image_path)
89
+ if error_msg or len(eye_crops) != 2:
90
+ return JSONResponse(status_code=400, content={"error": "Exactly two eyes not detected."})
91
+
92
+ results = {}
93
+ for i, eye_crop in enumerate(eye_crops):
94
+ side = f"eye_{i+1}"
95
+ iris_crop = detect_iris_roboflow(eye_crop)
96
+ if iris_crop is None:
97
+ results[side] = {"status": "No iris detected", "prediction": None}
98
+ continue
99
+
100
+ prediction = run_leukocoria_prediction(iris_crop)
101
+ results[side] = {"status": "Processed", "prediction": prediction}
102
+
103
+ return JSONResponse(content=results)
104
+
105
+ finally:
106
+ os.remove(temp_image_path)
107
 
108
+ # --- 4. Create the Gradio UI for the homepage ---
109
+ # This UI will call our own FastAPI endpoint, ensuring consistent logic.
110
+ def gradio_wrapper(image):
111
+ """A wrapper function to call our own FastAPI endpoint from the Gradio UI."""
112
  try:
113
+ # Save the numpy array from Gradio to a temporary file to send to our API
114
+ pil_image = Image.fromarray(image)
115
+ with tempfile.NamedTemporaryFile(mode="wb", suffix=".jpg", delete=False) as tmp:
116
+ pil_image.save(tmp, format="JPEG")
117
+ tmp_path = tmp.name
118
+
119
+ with open(tmp_path, "rb") as f:
120
+ files = {'image': ('image.jpg', f, 'image/jpeg')}
121
+ # The API is running on the same server, so we call it locally
122
+ response = requests.post("http://127.0.0.1:7860/api/detect/", files=files)
123
+
124
+ os.remove(tmp_path) # Clean up the temp file
125
+
126
+ if response.status_code == 200:
127
+ return response.json()
128
+ else:
129
+ return {"error": f"API Error {response.status_code}", "details": response.text}
130
+
131
  except Exception as e:
132
+ return {"error": str(e)}
133
 
 
134
  gradio_ui = gr.Interface(
135
+ fn=gradio_wrapper,
136
+ inputs=gr.Image(type="numpy", label="Upload an eye image to test"),
137
  outputs=gr.JSON(label="Prediction Results"),
138
  title="LeukoLook Eye Detector",
139
+ description="A demonstration of the LeukoLook detection model. This UI calls the same API endpoint that the main application uses."
140
  )
141
 
142
+ # --- 5. Mount the Gradio UI onto the FastAPI app's root ---
143
  app = gr.mount_gradio_app(app, gradio_ui, path="/")
144
 
145
+ # --- 6. Run the server ---
146
  if __name__ == "__main__":
 
147
  uvicorn.run(app, host="0.0.0.0", port=7860)