Spaces:
Running
Running
add the Base64-encoded images to the final JSON response
Browse files
app.py
CHANGED
@@ -79,28 +79,41 @@ def run_leukocoria_prediction(iris_crop):
|
|
79 |
# --- 3. FastAPI Application ---
|
80 |
app = FastAPI()
|
81 |
|
|
|
|
|
82 |
@app.post("/detect/")
|
83 |
async def full_detection_pipeline(image: UploadFile = File(...)):
|
84 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp:
|
85 |
contents = await image.read()
|
86 |
tmp.write(contents)
|
87 |
temp_image_path = tmp.name
|
88 |
-
|
89 |
try:
|
|
|
|
|
|
|
|
|
90 |
if not detect_faces_roboflow(temp_image_path):
|
91 |
return JSONResponse(status_code=400, content={"error": "No face detected."})
|
92 |
|
93 |
-
raw_image = cv2.imread(temp_image_path)
|
94 |
eye_crops = detect_eyes_roboflow(temp_image_path, raw_image)
|
95 |
-
|
96 |
if len(eye_crops) != 2:
|
97 |
-
return JSONResponse(status_code=
|
98 |
-
|
99 |
eye_crops.sort(key=lambda c: cv2.boundingRect(cv2.cvtColor(c, cv2.COLOR_BGR2GRAY))[0])
|
100 |
|
|
|
101 |
flags = {}
|
|
|
|
|
102 |
for i, eye_crop in enumerate(eye_crops):
|
103 |
side = "left" if i == 0 else "right"
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
pred = get_largest_iris_prediction(eye_crop)
|
105 |
if pred:
|
106 |
x1, y1 = int(pred['x'] - pred['width'] / 2), int(pred['y'] - pred['height'] / 2)
|
@@ -110,8 +123,13 @@ async def full_detection_pipeline(image: UploadFile = File(...)):
|
|
110 |
flags[side] = has_leuko
|
111 |
else:
|
112 |
flags[side] = None
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
finally:
|
117 |
os.remove(temp_image_path)
|
|
|
79 |
# --- 3. FastAPI Application ---
|
80 |
app = FastAPI()
|
81 |
|
82 |
+
# In app.py - an updated full_detection_pipeline function
|
83 |
+
|
84 |
@app.post("/detect/")
|
85 |
async def full_detection_pipeline(image: UploadFile = File(...)):
|
86 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp:
|
87 |
contents = await image.read()
|
88 |
tmp.write(contents)
|
89 |
temp_image_path = tmp.name
|
90 |
+
|
91 |
try:
|
92 |
+
raw_image = cv2.imread(temp_image_path)
|
93 |
+
if raw_image is None:
|
94 |
+
return JSONResponse(status_code=400, content={"error": "Could not read uploaded image."})
|
95 |
+
|
96 |
if not detect_faces_roboflow(temp_image_path):
|
97 |
return JSONResponse(status_code=400, content={"error": "No face detected."})
|
98 |
|
|
|
99 |
eye_crops = detect_eyes_roboflow(temp_image_path, raw_image)
|
|
|
100 |
if len(eye_crops) != 2:
|
101 |
+
return JSONResponse(status_code=200, content={"warnings": ["Exactly two eyes not detected."]})
|
102 |
+
|
103 |
eye_crops.sort(key=lambda c: cv2.boundingRect(cv2.cvtColor(c, cv2.COLOR_BGR2GRAY))[0])
|
104 |
|
105 |
+
# Prepare to store all our results
|
106 |
flags = {}
|
107 |
+
eye_images_b64 = {}
|
108 |
+
|
109 |
for i, eye_crop in enumerate(eye_crops):
|
110 |
side = "left" if i == 0 else "right"
|
111 |
+
|
112 |
+
# --- NEW: Encode the cropped eye image to Base64 ---
|
113 |
+
is_success, buffer = cv2.imencode(".jpg", eye_crop)
|
114 |
+
if is_success:
|
115 |
+
eye_images_b64[side] = "data:image/jpeg;base64," + base64.b64encode(buffer).decode("utf-8")
|
116 |
+
|
117 |
pred = get_largest_iris_prediction(eye_crop)
|
118 |
if pred:
|
119 |
x1, y1 = int(pred['x'] - pred['width'] / 2), int(pred['y'] - pred['height'] / 2)
|
|
|
123 |
flags[side] = has_leuko
|
124 |
else:
|
125 |
flags[side] = None
|
126 |
+
|
127 |
+
# --- NEW: Include the images in the final response ---
|
128 |
+
return JSONResponse(content={
|
129 |
+
"leukocoria": flags,
|
130 |
+
"warnings": [],
|
131 |
+
"two_eyes": eye_images_b64 # Add the eye images here
|
132 |
+
})
|
133 |
|
134 |
finally:
|
135 |
os.remove(temp_image_path)
|