Spaces:
Running
Running
debugged the vercel, render, and huggingface connection
Browse files
app.py
CHANGED
@@ -1,16 +1,19 @@
|
|
1 |
-
# Final,
|
2 |
|
3 |
import os
|
4 |
import cv2
|
5 |
import tempfile
|
6 |
import numpy as np
|
7 |
import uvicorn
|
|
|
|
|
8 |
from PIL import Image
|
9 |
from inference_sdk import InferenceHTTPClient
|
10 |
from fastapi import FastAPI, File, UploadFile
|
11 |
from fastapi.responses import JSONResponse
|
12 |
import tensorflow as tf
|
13 |
from huggingface_hub import hf_hub_download
|
|
|
14 |
|
15 |
# --- 1. Configuration and Model Loading ---
|
16 |
ROBOFLOW_API_KEY = os.environ.get("ROBOFLOW_API_KEY")
|
@@ -39,10 +42,8 @@ def detect_eyes_roboflow(image_path, raw_image):
|
|
39 |
resp = CLIENT_EYES.infer(image_path, model_id="eye-detection-kso3d/3")
|
40 |
crops = []
|
41 |
for p in resp.get("predictions", []):
|
42 |
-
x1 = int(p['x'] - p['width'] / 2)
|
43 |
-
|
44 |
-
x2 = int(p['x'] + p['width'] / 2)
|
45 |
-
y2 = int(p['y'] + p['height'] / 2)
|
46 |
crop = raw_image[y1:y2, x1:x2]
|
47 |
if crop.size > 0:
|
48 |
crops.append(crop)
|
@@ -57,30 +58,19 @@ def get_largest_iris_prediction(eye_crop):
|
|
57 |
|
58 |
def run_leukocoria_prediction(iris_crop):
|
59 |
if leuko_model is None: return {"error": "Leukocoria model not loaded"}, 0.0
|
60 |
-
|
61 |
img_pil = Image.fromarray(cv2.cvtColor(iris_crop, cv2.COLOR_BGR2RGB))
|
62 |
enh = enhance_image_unsharp_mask(np.array(img_pil))
|
63 |
enh_rs = cv2.resize(enh, (224, 224))
|
64 |
img_array = np.array(enh_rs) / 255.0
|
65 |
img_array = np.expand_dims(img_array, axis=0)
|
66 |
-
|
67 |
prediction = leuko_model.predict(img_array)
|
68 |
confidence = float(prediction[0][0])
|
69 |
has_leuko = confidence > 0.5
|
70 |
-
|
71 |
return has_leuko, confidence
|
72 |
|
73 |
# --- 3. FastAPI Application ---
|
74 |
app = FastAPI()
|
75 |
|
76 |
-
# --- remove display error ---
|
77 |
-
@app.get("/")
|
78 |
-
def read_root():
|
79 |
-
return {
|
80 |
-
"status": "LeukoLook API is running",
|
81 |
-
"documentation": "Send a POST request to the /detect/ endpoint with an image file."
|
82 |
-
}
|
83 |
-
|
84 |
@app.post("/detect/")
|
85 |
async def full_detection_pipeline(image: UploadFile = File(...)):
|
86 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp:
|
@@ -118,6 +108,33 @@ async def full_detection_pipeline(image: UploadFile = File(...)):
|
|
118 |
finally:
|
119 |
os.remove(temp_image_path)
|
120 |
|
121 |
-
# --- 4.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
if __name__ == "__main__":
|
123 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
1 |
+
# Final, Complete, and Working app.py for Hugging Face Space
|
2 |
|
3 |
import os
|
4 |
import cv2
|
5 |
import tempfile
|
6 |
import numpy as np
|
7 |
import uvicorn
|
8 |
+
import requests
|
9 |
+
import io
|
10 |
from PIL import Image
|
11 |
from inference_sdk import InferenceHTTPClient
|
12 |
from fastapi import FastAPI, File, UploadFile
|
13 |
from fastapi.responses import JSONResponse
|
14 |
import tensorflow as tf
|
15 |
from huggingface_hub import hf_hub_download
|
16 |
+
import gradio as gr
|
17 |
|
18 |
# --- 1. Configuration and Model Loading ---
|
19 |
ROBOFLOW_API_KEY = os.environ.get("ROBOFLOW_API_KEY")
|
|
|
42 |
resp = CLIENT_EYES.infer(image_path, model_id="eye-detection-kso3d/3")
|
43 |
crops = []
|
44 |
for p in resp.get("predictions", []):
|
45 |
+
x1, y1 = int(p['x'] - p['width'] / 2), int(p['y'] - p['height'] / 2)
|
46 |
+
x2, y2 = int(p['x'] + p['width'] / 2), int(p['y'] + p['height'] / 2)
|
|
|
|
|
47 |
crop = raw_image[y1:y2, x1:x2]
|
48 |
if crop.size > 0:
|
49 |
crops.append(crop)
|
|
|
58 |
|
59 |
def run_leukocoria_prediction(iris_crop):
|
60 |
if leuko_model is None: return {"error": "Leukocoria model not loaded"}, 0.0
|
|
|
61 |
img_pil = Image.fromarray(cv2.cvtColor(iris_crop, cv2.COLOR_BGR2RGB))
|
62 |
enh = enhance_image_unsharp_mask(np.array(img_pil))
|
63 |
enh_rs = cv2.resize(enh, (224, 224))
|
64 |
img_array = np.array(enh_rs) / 255.0
|
65 |
img_array = np.expand_dims(img_array, axis=0)
|
|
|
66 |
prediction = leuko_model.predict(img_array)
|
67 |
confidence = float(prediction[0][0])
|
68 |
has_leuko = confidence > 0.5
|
|
|
69 |
return has_leuko, confidence
|
70 |
|
71 |
# --- 3. FastAPI Application ---
|
72 |
app = FastAPI()
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
@app.post("/detect/")
|
75 |
async def full_detection_pipeline(image: UploadFile = File(...)):
|
76 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp:
|
|
|
108 |
finally:
|
109 |
os.remove(temp_image_path)
|
110 |
|
111 |
+
# --- 4. Create and Mount the Gradio UI for a professional homepage ---
|
112 |
+
def gradio_wrapper(image_array):
|
113 |
+
"""A wrapper function to call our own FastAPI endpoint from the Gradio UI."""
|
114 |
+
try:
|
115 |
+
pil_image = Image.fromarray(image_array)
|
116 |
+
with io.BytesIO() as buffer:
|
117 |
+
pil_image.save(buffer, format="JPEG")
|
118 |
+
files = {'image': ('image.jpg', buffer.getvalue(), 'image/jpeg')}
|
119 |
+
response = requests.post("http://127.0.0.1:7860/detect/", files=files)
|
120 |
+
|
121 |
+
if response.status_code == 200:
|
122 |
+
return response.json()
|
123 |
+
else:
|
124 |
+
return {"error": f"API Error {response.status_code}", "details": response.text}
|
125 |
+
except Exception as e:
|
126 |
+
return {"error": str(e)}
|
127 |
+
|
128 |
+
gradio_ui = gr.Interface(
|
129 |
+
fn=gradio_wrapper,
|
130 |
+
inputs=gr.Image(type="numpy", label="Upload an eye image to test the full pipeline"),
|
131 |
+
outputs=gr.JSON(label="Analysis Results"),
|
132 |
+
title="LeukoLook Eye Detector",
|
133 |
+
description="A demonstration of the LeukoLook detection model pipeline."
|
134 |
+
)
|
135 |
+
|
136 |
+
app = gr.mount_gradio_app(app, gradio_ui, path="/")
|
137 |
+
|
138 |
+
# --- 5. Run the server ---
|
139 |
if __name__ == "__main__":
|
140 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|