Spaces:
Running
Running
create app.py
Browse filesfile containing the Gradio code to run your model
app.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from tensorflow.keras.models import load_model
|
3 |
+
from huggingface_hub import hf_hub_download
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
# --- 1. Load the Model from your other Hugging Face Repo ---
|
8 |
+
try:
|
9 |
+
model_path = hf_hub_download(
|
10 |
+
repo_id="skibi11/leukolook-eye-detector",
|
11 |
+
filename="MobileNetV1_best.keras"
|
12 |
+
)
|
13 |
+
model = load_model(model_path)
|
14 |
+
print("Model loaded successfully!")
|
15 |
+
except Exception as e:
|
16 |
+
print(f"Error loading model: {e}")
|
17 |
+
model = None
|
18 |
+
|
19 |
+
# --- 2. Define the Pre-processing Logic ---
|
20 |
+
def preprocess_image(img_pil):
|
21 |
+
# This MUST match your training pre-processing
|
22 |
+
img = img_pil.resize((224, 224))
|
23 |
+
img_array = np.array(img)
|
24 |
+
if img_array.ndim == 2:
|
25 |
+
img_array = np.stack((img_array,)*3, axis=-1)
|
26 |
+
img_array = img_array / 255.0
|
27 |
+
img_array = np.expand_dims(img_array, axis=0)
|
28 |
+
return img_array
|
29 |
+
|
30 |
+
# --- 3. Define the Prediction Function ---
|
31 |
+
def predict(image_array):
|
32 |
+
if model is None:
|
33 |
+
raise gr.Error("Model is not loaded. Please check the Space logs.")
|
34 |
+
|
35 |
+
pil_image = Image.fromarray(image_array.astype('uint8'), 'RGB')
|
36 |
+
processed_image = preprocess_image(pil_image)
|
37 |
+
prediction = model.predict(processed_image)
|
38 |
+
|
39 |
+
# Convert prediction to a JSON-friendly format
|
40 |
+
labels = [f"Class_{i}" for i in range(prediction.shape[1])]
|
41 |
+
confidences = {label: float(score) for label, score in zip(labels, prediction[0])}
|
42 |
+
return confidences
|
43 |
+
|
44 |
+
# --- 4. Create and Launch the Gradio API ---
|
45 |
+
gr.Interface(
|
46 |
+
fn=predict,
|
47 |
+
inputs=gr.Image(),
|
48 |
+
outputs="json",
|
49 |
+
title="LeukoLook Eye Detector API"
|
50 |
+
).launch()
|