# Final, Complete, and Working app.py for Hugging Face Space import os import cv2 import tempfile import numpy as np import uvicorn import requests import io from PIL import Image from inference_sdk import InferenceHTTPClient from fastapi import FastAPI, File, UploadFile from fastapi.responses import JSONResponse import tensorflow as tf from huggingface_hub import hf_hub_download import gradio as gr # --- 1. Configuration and Model Loading --- ROBOFLOW_API_KEY = os.environ.get("ROBOFLOW_API_KEY") CLIENT_FACE = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY) CLIENT_EYES = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY) CLIENT_IRIS = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY) leuko_model = None try: model_path = hf_hub_download("skibi11/leukolook-eye-detector", "MobileNetV1_best.keras") leuko_model = tf.keras.models.load_model(model_path) print("--- LEUKOCORIA MODEL LOADED SUCCESSFULLY! ---") except Exception as e: print(f"--- FATAL ERROR: COULD NOT LOAD LEUKOCORIA MODEL: {e} ---") raise RuntimeError(f"Could not load leukocoria model: {e}") # --- 2. All Helper Functions --- def enhance_image_unsharp_mask(image, strength=0.5, radius=5): blur = cv2.GaussianBlur(image, (radius, radius), 0) return cv2.addWeighted(image, 1.0 + strength, blur, -strength, 0) def detect_faces_roboflow(image_path): return CLIENT_FACE.infer(image_path, model_id="face-detector-v4liw/2").get("predictions", []) def detect_eyes_roboflow(image_path, raw_image): """Calls Roboflow to find eyes and returns cropped images of them.""" try: resp = CLIENT_EYES.infer(image_path, model_id="eye-detection-kso3d/3") crops = [] for p in resp.get("predictions", []): x1 = int(p['x'] - p['width'] / 2) y1 = int(p['y'] - p['height'] / 2) x2 = int(p['x'] + p['width'] / 2) y2 = int(p['y'] + p['height'] / 2) crop = raw_image[y1:y2, x1:x2] if crop.size > 0: crops.append(crop) # On success, return the crops and None for the error message return crops, None except Exception as e: # If Roboflow fails, return an empty list and the error message print(f"Error in Roboflow eye detection: {e}") return [], str(e) def get_largest_iris_prediction(eye_crop): "Calls Roboflow to find the largest iris using a temporary file for reliability." with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp: cv2.imwrite(tmp.name, eye_crop) temp_iris_path = tmp.name try: # Use the file path for inference, which is more robust resp = CLIENT_IRIS.infer(temp_iris_path, model_id="iris_120_set/7") preds = resp.get("predictions", []) return max(preds, key=lambda p: p["width"] * p["height"]) if preds else None finally: # Ensure the temporary file is always deleted os.remove(temp_iris_path) def run_leukocoria_prediction(iris_crop): if leuko_model is None: return {"error": "Leukocoria model not loaded"}, 0.0 img_pil = Image.fromarray(cv2.cvtColor(iris_crop, cv2.COLOR_BGR2RGB)) enh = enhance_image_unsharp_mask(np.array(img_pil)) enh_rs = cv2.resize(enh, (224, 224)) img_array = np.array(enh_rs) / 255.0 img_array = np.expand_dims(img_array, axis=0) prediction = leuko_model.predict(img_array) confidence = float(prediction[0][0]) has_leuko = confidence > 0.5 return has_leuko, confidence # --- 3. FastAPI Application --- app = FastAPI() # In app.py - an updated full_detection_pipeline function @app.post("/detect/") async def full_detection_pipeline(image: UploadFile = File(...)): with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp: contents = await image.read() tmp.write(contents) temp_image_path = tmp.name try: raw_image = cv2.imread(temp_image_path) if raw_image is None: return JSONResponse(status_code=400, content={"error": "Could not read uploaded image."}) if not detect_faces_roboflow(temp_image_path): return JSONResponse(status_code=400, content={"error": "No face detected."}) eye_crops, error_msg = detect_eyes_roboflow(temp_image_path, raw_image) if error_msg or len(eye_crops) != 2: return JSONResponse(status_code=200, content={"warnings": ["Exactly two eyes not detected."]}) eye_crops.sort(key=lambda c: cv2.boundingRect(cv2.cvtColor(c, cv2.COLOR_BGR2GRAY))[0]) # Prepare to store all our results flags = {} eye_images_b64 = {} for i, eye_crop in enumerate(eye_crops): side = "left" if i == 0 else "right" # --- NEW: Encode the cropped eye image to Base64 --- is_success, buffer = cv2.imencode(".jpg", eye_crop) if is_success: eye_images_b64[side] = "data:image/jpeg;base64," + base64.b64encode(buffer).decode("utf-8") pred = get_largest_iris_prediction(eye_crop) if pred: x1, y1 = int(pred['x'] - pred['width'] / 2), int(pred['y'] - pred['height'] / 2) x2, y2 = int(pred['x'] + pred['width'] / 2), int(pred['y'] + pred['height'] / 2) iris_crop = eye_crop[y1:y2, x1:x2] has_leuko, confidence = run_leukocoria_prediction(iris_crop) flags[side] = has_leuko else: flags[side] = None # --- NEW: Include the images in the final response --- return JSONResponse(content={ "leukocoria": flags, "warnings": [], "two_eyes": eye_images_b64 # Add the eye images here }) finally: os.remove(temp_image_path) # --- 4. Create and Mount the Gradio UI for a professional homepage --- def gradio_wrapper(image_array): """A wrapper function to call our own FastAPI endpoint from the Gradio UI.""" try: pil_image = Image.fromarray(image_array) with io.BytesIO() as buffer: pil_image.save(buffer, format="JPEG") files = {'image': ('image.jpg', buffer.getvalue(), 'image/jpeg')} response = requests.post("http://127.0.0.1:7860/detect/", files=files) if response.status_code == 200: return response.json() else: return {"error": f"API Error {response.status_code}", "details": response.text} except Exception as e: return {"error": str(e)} gradio_ui = gr.Interface( fn=gradio_wrapper, inputs=gr.Image(type="numpy", label="Upload an eye image to test the full pipeline"), outputs=gr.JSON(label="Analysis Results"), title="LeukoLook Eye Detector", description="A demonstration of the LeukoLook detection model pipeline." ) app = gr.mount_gradio_app(app, gradio_ui, path="/") # --- 5. Run the server --- if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=7860)