import gradio as gr from tensorflow.keras.models import load_model from huggingface_hub import hf_hub_download import numpy as np from PIL import Image # --- 1. Load the Model from your other Hugging Face Repo --- try: model_path = hf_hub_download( repo_id="skibi11/leukolook-eye-detector", filename="MobileNetV1_best.keras" ) model = load_model(model_path) print("Model loaded successfully!") except Exception as e: print(f"Error loading model: {e}") model = None # --- 2. Define the Pre-processing Logic --- def preprocess_image(img_pil): # This MUST match your training pre-processing img = img_pil.resize((224, 224)) img_array = np.array(img) if img_array.ndim == 2: img_array = np.stack((img_array,)*3, axis=-1) img_array = img_array / 255.0 img_array = np.expand_dims(img_array, axis=0) return img_array # --- 3. Define the Prediction Function --- def predict(image_array): if model is None: raise gr.Error("Model is not loaded. Please check the Space logs.") pil_image = Image.fromarray(image_array.astype('uint8'), 'RGB') processed_image = preprocess_image(pil_image) prediction = model.predict(processed_image) # Convert prediction to a JSON-friendly format labels = [f"Class_{i}" for i in range(prediction.shape[1])] confidences = {label: float(score) for label, score in zip(labels, prediction[0])} return confidences # --- 4. Create and Launch the Gradio API --- gr.Interface( fn=predict, inputs=gr.Image(), outputs="json", title="LeukoLook Eye Detector API" ).launch()