# app.py # Adapted to follow the logic from the provided Django api/views.py with added logging import os import cv2 import tempfile import numpy as np import uvicorn import base64 import io from PIL import Image from inference_sdk import InferenceHTTPClient from fastapi import FastAPI, File, UploadFile from fastapi.responses import JSONResponse import tensorflow as tf from huggingface_hub import hf_hub_download import gradio as gr # --- 1. Configuration and Model Loading --- # Constants from the new Django logic MAX_INFER_DIM = 1024 ENHANCED_SIZE = (224, 224) # Roboflow and TF Model setup ROBOFLOW_API_KEY = os.environ.get("ROBOFLOW_API_KEY") CLIENT_FACE = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY) CLIENT_EYES = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY) CLIENT_IRIS = InferenceHTTPClient(api_url="https://detect.roboflow.com", api_key=ROBOFLOW_API_KEY) leuko_model = None try: model_path = hf_hub_download("skibi11/leukolook-eye-detector", "MobileNetV1_best.keras") leuko_model = tf.keras.models.load_model(model_path) print("--- LEUKOCORIA MODEL LOADED SUCCESSFULLY! ---") except Exception as e: print(f"--- FATAL ERROR: COULD NOT LOAD LEUKOCORIA MODEL: {e} ---") raise RuntimeError(f"Could not load leukocoria model: {e}") # --- 2. Helper Functions (Adapted from Django views.py) --- def enhance_image_unsharp_mask(image, strength=0.5, radius=5): """Enhances image using unsharp masking.""" blur = cv2.GaussianBlur(image, (radius, radius), 0) return cv2.addWeighted(image, 1.0 + strength, blur, -strength, 0) def detect_faces_roboflow(image_path): """Detects faces using Roboflow.""" return CLIENT_FACE.infer(image_path, model_id="face-detector-v4liw/2").get("predictions", []) def detect_eyes_roboflow(image_path): """ Detects eyes, resizing the image if necessary for inference, then scales coordinates back to the original image size. """ raw_image = cv2.imread(image_path) if raw_image is None: return None, [] h, w = raw_image.shape[:2] scale = min(1.0, MAX_INFER_DIM / max(h, w)) if scale < 1.0: small_image = cv2.resize(raw_image, (int(w*scale), int(h*scale))) with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp: cv2.imwrite(tmp.name, small_image) infer_path = tmp.name else: infer_path = image_path try: resp = CLIENT_EYES.infer(infer_path, model_id="eye-detection-kso3d/3") finally: if scale < 1.0 and os.path.exists(infer_path): os.remove(infer_path) crops = [] for p in resp.get("predictions", []): cx, cy = p["x"] / scale, p["y"] / scale bw, bh = p["width"] / scale, p["height"] / scale x1 = int(cx - bw / 2) y1 = int(cy - bh / 2) x2 = int(cx + bw / 2) y2 = int(cy + bh / 2) crop = raw_image[y1:y2, x1:x2] if crop.size > 0: crops.append({"coords": (x1, y1, x2, y2), "image": crop}) return raw_image, crops def get_largest_iris_prediction(eye_crop): """Finds the largest iris in an eye crop.""" with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp: cv2.imwrite(tmp.name, eye_crop) temp_path = tmp.name try: resp = CLIENT_IRIS.infer(temp_path, model_id="iris_120_set/7") preds = resp.get("predictions", []) return max(preds, key=lambda p: p["width"] * p["height"]) if preds else None finally: os.remove(temp_path) def run_leukocoria_prediction(iris_crop): """Runs the loaded TensorFlow model on an iris crop.""" enh = enhance_image_unsharp_mask(iris_crop) enh_rs = cv2.resize(enh, ENHANCED_SIZE) img_array = np.array(enh_rs) / 255.0 img_array = np.expand_dims(img_array, axis=0) prediction = leuko_model.predict(img_array) confidence = float(prediction[0][0]) has_leuko = confidence > 0.5 return has_leuko, confidence def to_base64(image): """Converts a CV2 image to a base64 string.""" _, buffer = cv2.imencode(".jpg", image) return "data:image/jpeg;base64," + base64.b64encode(buffer).decode() # --- 3. FastAPI Application --- app = FastAPI() @app.post("/detect/") async def full_detection_pipeline(image: UploadFile = File(...)): print("\n--- 1. Starting full detection pipeline. ---") with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as tmp: tmp.write(await image.read()) temp_image_path = tmp.name try: print("--- 2. Checking for faces... ---") if not detect_faces_roboflow(temp_image_path): print("--- 2a. No face detected. Aborting. ---") return JSONResponse(status_code=200, content={"warnings": ["No face detected."]}) print("--- 2b. Face found. Proceeding. ---") print("--- 3. Detecting eyes... ---") raw_image, eye_crops = detect_eyes_roboflow(temp_image_path) if raw_image is None: return JSONResponse(status_code=400, content={"error": "Could not read uploaded image."}) print(f"--- 4. Found {len(eye_crops)} eyes. ---") if len(eye_crops) != 2: return JSONResponse(status_code=200, content={ "analyzed_image": to_base64(raw_image), "warnings": ["Exactly two eyes not detected."] }) initial_coords = [e['coords'] for e in eye_crops] print(f"--- 5. Initial eye coordinates: {initial_coords} ---") sorted_eyes = sorted(eye_crops, key=lambda e: e["coords"][0]) sorted_coords = [e['coords'] for e in sorted_eyes] print(f"--- 6. Sorted eye coordinates: {sorted_coords} ---") images_b64 = {} flags = {} for i, eye_info in enumerate(sorted_eyes): side = "right" if i == 0 else "left" print(f"--- 7. Processing side: '{side}' ---") eye_img = eye_info["image"] pred = get_largest_iris_prediction(eye_img) if pred: print(f"--- 8. Iris found for '{side}' eye. Running leukocoria prediction... ---") cx, cy, w, h = pred["x"], pred["y"], pred["width"], pred["height"] x1, y1 = int(cx - w / 2), int(cy - h / 2) x2, y2 = int(cx + w / 2), int(cy + h / 2) iris_crop = eye_img[y1:y2, x1:x2] has_leuko, confidence = run_leukocoria_prediction(iris_crop) print(f"--- 9. Prediction for '{side}' eye: Has Leukocoria={has_leuko}, Confidence={confidence:.4f} ---") flags[side] = has_leuko else: print(f"--- 8a. No iris found for '{side}' eye. ---") flags[side] = None images_b64[side] = to_base64(eye_img) print(f"--- 10. Final generated flags: {flags} ---") return JSONResponse(status_code=200, content={ "analyzed_image": to_base64(raw_image), "two_eyes": images_b64, "leukocoria": flags, "warnings": [] }) finally: os.remove(temp_image_path) # --- 4. Gradio UI (for simple testing) --- def gradio_wrapper(image_array): try: pil_image = Image.fromarray(image_array) with io.BytesIO() as buffer: pil_image.save(buffer, format="JPEG") files = {'image': ('image.jpg', buffer.getvalue(), 'image/jpeg')} response = requests.post("http://127.0.0.1:7860/detect/", files=files) return response.json() except Exception as e: return {"error": str(e)} gradio_ui = gr.Interface( fn=gradio_wrapper, inputs=gr.Image(type="numpy", label="Upload an eye image"), outputs=gr.JSON(label="Analysis Results"), title="LeukoLook Eye Detector", description="Demonstration of the full detection pipeline." ) app = gr.mount_gradio_app(app, gradio_ui, path="/") # --- 5. Run Server --- if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=7860)