Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,25 @@
|
|
1 |
import streamlit as st
|
2 |
-
from crewai import Crew, Agent, Task, Process
|
3 |
from langchain_community.tools import DuckDuckGoSearchRun
|
4 |
-
from
|
5 |
import os
|
6 |
-
import google.generativeai as genai
|
7 |
from langchain.tools import BaseTool
|
8 |
|
|
|
|
|
|
|
9 |
|
10 |
-
# Configure Gemini API Key
|
11 |
-
GOOGLE_API_KEY = st.secrets["GOOGLE_API_KEY"]
|
12 |
-
genai.configure(api_key=GOOGLE_API_KEY)
|
13 |
|
14 |
-
# Define the LLM using langchain-
|
15 |
-
|
16 |
-
|
|
|
17 |
|
18 |
|
19 |
# Define Tools
|
20 |
search_tool = DuckDuckGoSearchRun()
|
21 |
|
|
|
22 |
class ToolWrapper(BaseTool):
|
23 |
"""Wrapper for tools to make them compatible with CrewAI."""
|
24 |
|
@@ -33,7 +34,7 @@ class ToolWrapper(BaseTool):
|
|
33 |
return await self.func(*args, **kwargs)
|
34 |
|
35 |
|
36 |
-
# Define Agents - Pass the
|
37 |
inventory_specialist = Agent(
|
38 |
role="Inventory Specialist",
|
39 |
goal="Identify the best matching homes from current inventory based on customer criteria.",
|
@@ -51,7 +52,7 @@ inventory_specialist = Agent(
|
|
51 |
description=search_tool.description,
|
52 |
)
|
53 |
],
|
54 |
-
llm=
|
55 |
)
|
56 |
|
57 |
communication_specialist = Agent(
|
@@ -64,7 +65,7 @@ communication_specialist = Agent(
|
|
64 |
""",
|
65 |
verbose=True,
|
66 |
allow_delegation=True,
|
67 |
-
llm=
|
68 |
)
|
69 |
|
70 |
|
@@ -102,7 +103,7 @@ def create_communication_task(inventory_results):
|
|
102 |
|
103 |
|
104 |
# Streamlit App
|
105 |
-
st.title("AI-Powered Real Estate Lead Response (
|
106 |
|
107 |
customer_zipcode = st.text_input("Zip Code:", placeholder="Enter zip code")
|
108 |
customer_bedrooms = st.number_input(
|
@@ -146,5 +147,5 @@ if st.button("Submit Inquiry"):
|
|
146 |
except Exception as e:
|
147 |
st.error(f"An error occurred: {e}")
|
148 |
st.write(
|
149 |
-
"Please check your
|
150 |
)
|
|
|
1 |
import streamlit as st
|
2 |
+
from crewai import Crew, Agent, Task, Process
|
3 |
from langchain_community.tools import DuckDuckGoSearchRun
|
4 |
+
from langchain_groq import ChatGroq # Import ChatGroq
|
5 |
import os
|
|
|
6 |
from langchain.tools import BaseTool
|
7 |
|
8 |
+
# Configure Groq API Key (replace with your actual key)
|
9 |
+
GROQ_API_KEY = st.secrets["GROQ_API_KEY"]
|
10 |
+
# No need for genai.configure anymore
|
11 |
|
|
|
|
|
|
|
12 |
|
13 |
+
# Define the LLM using langchain-groq
|
14 |
+
groq_llm = ChatGroq(
|
15 |
+
model_name="groq/deepseek-coder-33b-instruct", temperature=0.7, groq_api_key=GROQ_API_KEY
|
16 |
+
)
|
17 |
|
18 |
|
19 |
# Define Tools
|
20 |
search_tool = DuckDuckGoSearchRun()
|
21 |
|
22 |
+
|
23 |
class ToolWrapper(BaseTool):
|
24 |
"""Wrapper for tools to make them compatible with CrewAI."""
|
25 |
|
|
|
34 |
return await self.func(*args, **kwargs)
|
35 |
|
36 |
|
37 |
+
# Define Agents - Pass the Groq LLM directly
|
38 |
inventory_specialist = Agent(
|
39 |
role="Inventory Specialist",
|
40 |
goal="Identify the best matching homes from current inventory based on customer criteria.",
|
|
|
52 |
description=search_tool.description,
|
53 |
)
|
54 |
],
|
55 |
+
llm=groq_llm, # Pass the Groq LLM directly
|
56 |
)
|
57 |
|
58 |
communication_specialist = Agent(
|
|
|
65 |
""",
|
66 |
verbose=True,
|
67 |
allow_delegation=True,
|
68 |
+
llm=groq_llm, # Pass the Groq LLM directly
|
69 |
)
|
70 |
|
71 |
|
|
|
103 |
|
104 |
|
105 |
# Streamlit App
|
106 |
+
st.title("AI-Powered Real Estate Lead Response (Groq)")
|
107 |
|
108 |
customer_zipcode = st.text_input("Zip Code:", placeholder="Enter zip code")
|
109 |
customer_bedrooms = st.number_input(
|
|
|
147 |
except Exception as e:
|
148 |
st.error(f"An error occurred: {e}")
|
149 |
st.write(
|
150 |
+
"Please check your Groq API key and ensure it has the necessary permissions."
|
151 |
)
|