|
import gradio as gr |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
from sklearn.datasets import make_blobs |
|
import time |
|
from sklearn.cluster import KMeans, MiniBatchKMeans |
|
from sklearn.metrics.pairwise import pairwise_distances_argmin |
|
|
|
|
|
model_card = f""" |
|
## Description |
|
|
|
This demo compares the performance of the **MiniBatchKMeans** and **KMeans**. The MiniBatchKMeans is faster, but gives slightly different results. |
|
The points that are labelled differently between the two algorithms are also plotted. |
|
You can play around with different ``number of samples`` and ``number of mini batch size`` to see the effect |
|
|
|
## Dataset |
|
|
|
Simulation dataset |
|
""" |
|
|
|
|
|
def do_train(n_samples, batch_size): |
|
|
|
np.random.seed(0) |
|
|
|
centers = np.random.rand(3, 2) |
|
n_clusters = len(centers) |
|
X, labels_true = make_blobs(n_samples=n_samples, centers=centers, cluster_std=0.7) |
|
|
|
k_means = KMeans(init="k-means++", n_clusters=n_clusters, n_init=10) |
|
t0 = time.time() |
|
k_means.fit(X) |
|
t_batch = time.time() - t0 |
|
|
|
|
|
mbk = MiniBatchKMeans( |
|
init="k-means++", |
|
n_clusters=n_clusters, |
|
batch_size=batch_size, |
|
n_init=10, |
|
max_no_improvement=10, |
|
verbose=0, |
|
) |
|
t0 = time.time() |
|
mbk.fit(X) |
|
t_mini_batch = time.time() - t0 |
|
|
|
|
|
k_means_cluster_centers = k_means.cluster_centers_ |
|
order = pairwise_distances_argmin(k_means.cluster_centers_, mbk.cluster_centers_) |
|
mbk_means_cluster_centers = mbk.cluster_centers_[order] |
|
|
|
k_means_labels = pairwise_distances_argmin(X, k_means_cluster_centers) |
|
mbk_means_labels = pairwise_distances_argmin(X, mbk_means_cluster_centers) |
|
|
|
|
|
colors = ["#4EACC5", "#FF9C34", "#4E9A06"] |
|
|
|
|
|
fig1, axes1 = plt.subplots() |
|
for k, col in zip(range(n_clusters), colors): |
|
my_members = k_means_labels == k |
|
cluster_center = k_means_cluster_centers[k] |
|
axes1.plot(X[my_members, 0], X[my_members, 1], "w", markerfacecolor=col, marker=".", markersize=15) |
|
axes1.plot( |
|
cluster_center[0], |
|
cluster_center[1], |
|
"o", |
|
markerfacecolor=col, |
|
markeredgecolor="k", |
|
markersize=12, |
|
) |
|
axes1.set_title("KMeans") |
|
axes1.set_xticks(()) |
|
axes1.set_yticks(()) |
|
|
|
|
|
fig2, axes2 = plt.subplots() |
|
for k, col in zip(range(n_clusters), colors): |
|
my_members = mbk_means_labels == k |
|
cluster_center = mbk_means_cluster_centers[k] |
|
axes2.plot(X[my_members, 0], X[my_members, 1], "w", markerfacecolor=col, marker=".", markersize=15) |
|
axes2.plot( |
|
cluster_center[0], |
|
cluster_center[1], |
|
"o", |
|
markerfacecolor=col, |
|
markeredgecolor="k", |
|
markersize=12, |
|
) |
|
axes2.set_title("MiniBatchKMeans") |
|
axes2.set_xticks(()) |
|
axes2.set_yticks(()) |
|
|
|
|
|
different = mbk_means_labels == 4 |
|
fig3, axes3 = plt.subplots() |
|
|
|
for k in range(n_clusters): |
|
different += (k_means_labels == k) != (mbk_means_labels == k) |
|
|
|
identic = np.logical_not(different) |
|
axes3.plot(X[identic, 0], X[identic, 1], "w", markerfacecolor="#bbbbbb", marker=".", markersize=15) |
|
axes3.plot(X[different, 0], X[different, 1], "w", markerfacecolor="m", marker=".", markersize=15) |
|
axes3.set_title("Difference") |
|
axes3.set_xticks(()) |
|
axes3.set_yticks(()) |
|
text = f"KMeans Train time: {t_batch:.2f}s Inertia: {k_means.inertia_:.4f}. MiniBatchKMeans Train time: {t_mini_batch:.2f}s Inertia: {mbk.inertia_:.4f}" |
|
plt.close() |
|
return fig1, fig2, fig3, text |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(''' |
|
<div> |
|
<h1 style='text-align: center'>Comparison of the K-Means and MiniBatchKMeans clustering algorithms</h1> |
|
</div> |
|
''') |
|
gr.Markdown(model_card) |
|
gr.Markdown("Author: <a href=\"https://huggingface.co/vumichien\">Vu Minh Chien</a>. Based on the example from <a href=\"https://scikit-learn.org/stable/auto_examples/cluster/plot_mini_batch_kmeans.html#sphx-glr-auto-examples-cluster-plot-mini-batch-kmeans-py\">scikit-learn</a>") |
|
n_samples = gr.Slider(minimum=500, maximum=5000, step=500, value=500, label="Number of samples") |
|
batch_size = gr.Slider(minimum=100, maximum=2000, step=100, value=100, label="Size of the mini batches") |
|
with gr.Row(): |
|
with gr.Column(): |
|
plot1 = gr.Plot(label="KMeans") |
|
with gr.Column(): |
|
plot2 = gr.Plot(label="MiniBatchKMeans") |
|
with gr.Column(): |
|
plot3 = gr.Plot(label="Difference") |
|
with gr.Row(): |
|
results = gr.Textbox(label="Results") |
|
|
|
n_samples.change(fn=do_train, inputs=[n_samples, batch_size], outputs=[plot1, plot2, plot3, results]) |
|
batch_size.change(fn=do_train, inputs=[n_samples, batch_size], outputs=[plot1, plot2, plot3, results]) |
|
|
|
demo.launch() |