Commit
·
c820b57
1
Parent(s):
5e03784
App itself
Browse files
app.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import gradio as gr
|
3 |
+
import plotly.graph_objects as go
|
4 |
+
from sklearn.datasets import make_circles
|
5 |
+
from sklearn.naive_bayes import BernoulliNB
|
6 |
+
from sklearn.decomposition import TruncatedSVD
|
7 |
+
from sklearn.ensemble import RandomTreesEmbedding, ExtraTreesClassifier
|
8 |
+
|
9 |
+
|
10 |
+
def plot_scatter(X, y, title):
|
11 |
+
fig = go.Figure()
|
12 |
+
|
13 |
+
fig.add_trace(
|
14 |
+
go.Scatter(
|
15 |
+
x=X[:, 0],
|
16 |
+
y=X[:, 1],
|
17 |
+
mode="markers",
|
18 |
+
marker=dict(color=y, size=10, colorscale="Viridis", line=dict(width=1)),
|
19 |
+
)
|
20 |
+
)
|
21 |
+
|
22 |
+
fig.update_layout(
|
23 |
+
title=title,
|
24 |
+
xaxis=dict(showticklabels=False),
|
25 |
+
yaxis=dict(showticklabels=False)
|
26 |
+
)
|
27 |
+
|
28 |
+
return fig
|
29 |
+
|
30 |
+
def plot_decision_boundary(X, y, model, data_preprocess=None, title=None):
|
31 |
+
# Creating Grid
|
32 |
+
h = 0.01
|
33 |
+
x_min, x_max = X[:, 0].min() - 0.5, X[:, 0].max() + 0.5
|
34 |
+
y_min, y_max = X[:, 1].min() - 0.5, X[:, 1].max() + 0.5
|
35 |
+
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
|
36 |
+
grid = np.c_[xx.ravel(), yy.ravel()]
|
37 |
+
|
38 |
+
# Creating Contour
|
39 |
+
if data_preprocess:
|
40 |
+
grid = data_preprocess.transform(grid)
|
41 |
+
y_grid_pred = model.predict_proba(grid)[:, 1]
|
42 |
+
|
43 |
+
# Plotting
|
44 |
+
fig = go.Figure()
|
45 |
+
fig.add_trace(
|
46 |
+
go.Heatmap(
|
47 |
+
x=np.arange(x_min, x_max, h),
|
48 |
+
y=np.arange(y_min, y_max, h),
|
49 |
+
z=y_grid_pred.reshape(xx.shape),
|
50 |
+
colorscale="Viridis",
|
51 |
+
opacity=0.8,
|
52 |
+
showscale=False
|
53 |
+
)
|
54 |
+
)
|
55 |
+
|
56 |
+
fig.add_trace(
|
57 |
+
go.Scatter(
|
58 |
+
x=X[:, 0],
|
59 |
+
y=X[:, 1],
|
60 |
+
mode="markers",
|
61 |
+
marker=dict(color=y, size=10, colorscale="Viridis", line=dict(width=1)),
|
62 |
+
)
|
63 |
+
)
|
64 |
+
|
65 |
+
fig.update_layout(
|
66 |
+
title=title if title else "Decision Boundary",
|
67 |
+
xaxis=dict(showticklabels=False),
|
68 |
+
yaxis=dict(showticklabels=False)
|
69 |
+
)
|
70 |
+
|
71 |
+
return fig
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
def app_fn(
|
76 |
+
factor: float,
|
77 |
+
random_state: int,
|
78 |
+
noise:float,
|
79 |
+
n_estimators: int,
|
80 |
+
max_depth: int
|
81 |
+
):
|
82 |
+
# make a synthetic dataset
|
83 |
+
X, y = make_circles(factor=factor, random_state=random_state, noise=noise)
|
84 |
+
|
85 |
+
# use RandomTreesEmbedding to transform data
|
86 |
+
hasher = RandomTreesEmbedding(n_estimators=n_estimators, random_state=random_state, max_depth=max_depth)
|
87 |
+
X_transformed = hasher.fit_transform(X)
|
88 |
+
|
89 |
+
# Visualize result after dimensionality reduction using truncated SVD
|
90 |
+
svd = TruncatedSVD(n_components=2)
|
91 |
+
X_reduced = svd.fit_transform(X_transformed)
|
92 |
+
|
93 |
+
# Learn a Naive Bayes classifier on the transformed data
|
94 |
+
nb = BernoulliNB()
|
95 |
+
nb.fit(X_transformed, y)
|
96 |
+
|
97 |
+
# Learn an ExtraTreesClassifier for comparison
|
98 |
+
trees = ExtraTreesClassifier(max_depth=max_depth, n_estimators=n_estimators, random_state=random_state)
|
99 |
+
trees.fit(X, y)
|
100 |
+
|
101 |
+
# Plotting Original Data
|
102 |
+
fig1 = plot_scatter(X, y, "Original Data")
|
103 |
+
fig2 = plot_scatter(X_reduced, y, f"Truncated SVD Reduction (2D) of Transformed Data ({X_transformed.shape[1]})")
|
104 |
+
fig3 = plot_decision_boundary(X, y, nb, hasher, "Naive Bayes Decision Boundary")
|
105 |
+
fig4 = plot_decision_boundary(X, y, trees, title="Extra Trees Decision Boundary")
|
106 |
+
|
107 |
+
return fig1, fig2, fig3, fig4
|
108 |
+
|
109 |
+
title = "Hashing Feature Transformation using Totally Random Trees"
|
110 |
+
with gr.Blocks() as demo:
|
111 |
+
gr.Markdown(f"# {title}")
|
112 |
+
gr.Markdown(
|
113 |
+
"""
|
114 |
+
### RandomTreesEmbedding provides a way to map data to a very high-dimensional, \
|
115 |
+
sparse representation, which might be beneficial for classification. \
|
116 |
+
The mapping is completely unsupervised and very efficient.
|
117 |
+
|
118 |
+
### This example visualizes the partitions given by several trees and shows how \
|
119 |
+
the transformation can also be used for non-linear dimensionality reduction \
|
120 |
+
or non-linear classification.
|
121 |
+
|
122 |
+
### Points that are neighboring often share the same leaf of a \
|
123 |
+
tree and therefore share large parts of their hashed representation. \
|
124 |
+
This allows to separate two concentric circles simply based on \
|
125 |
+
the principal components of the transformed data with truncated SVD.
|
126 |
+
|
127 |
+
### In high-dimensional spaces, linear classifiers often achieve excellent \
|
128 |
+
accuracy. For sparse binary data, BernoulliNB is particularly well-suited. \
|
129 |
+
The bottom row compares the decision boundary obtained by BernoulliNB in the \
|
130 |
+
transformed space with an ExtraTreesClassifier forests learned on the original data.
|
131 |
+
|
132 |
+
[Original Example](https://scikit-learn.org/stable/auto_examples/ensemble/plot_random_forest_embedding.html#sphx-glr-auto-examples-ensemble-plot-random-forest-embedding-py)
|
133 |
+
"""
|
134 |
+
)
|
135 |
+
with gr.Row():
|
136 |
+
factor = gr.inputs.Slider(minimum=0.05, maximum=1.0, step=0.01, default=0.5, label="Factor")
|
137 |
+
noise = gr.inputs.Slider(minimum=0.0, maximum=1.0, step=0.01, default=0.05, label="Noise")
|
138 |
+
n_estimators = gr.inputs.Slider(minimum=1, maximum=100, step=1, default=10, label="Number of Estimators")
|
139 |
+
max_depth = gr.inputs.Slider(minimum=1, maximum=100, step=1, default=3, label="Max Depth")
|
140 |
+
random_state = gr.inputs.Slider(minimum=0, maximum=100, step=1, default=0, label="Random State")
|
141 |
+
btn = gr.Button(label="Run")
|
142 |
+
with gr.Row():
|
143 |
+
plot1 = gr.Plot(label="Origianl Data")
|
144 |
+
plot2 = gr.Plot(label="Truncated Date")
|
145 |
+
with gr.Row():
|
146 |
+
plot3 = gr.Plot(label="Naive Bayes Decision Boundary")
|
147 |
+
plot4 = gr.Plot(label="Extra Trees Decision Boundary")
|
148 |
+
|
149 |
+
btn.click(app_fn, outputs=[plot1, plot2, plot3, plot4], inputs=[factor, random_state, noise, n_estimators, max_depth])
|
150 |
+
demo.load(app_fn, inputs=[factor, random_state, noise, n_estimators, max_depth], outputs=[plot1, plot2, plot3, plot4])
|
151 |
+
|
152 |
+
demo.launch()
|