Commit
·
0864129
1
Parent(s):
aceec91
Gradio app to run example
Browse files
app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import gradio as gr
|
3 |
+
import plotly.graph_objects as go
|
4 |
+
from sklearn.datasets import load_diabetes
|
5 |
+
from sklearn.ensemble import GradientBoostingRegressor
|
6 |
+
from sklearn.ensemble import RandomForestRegressor
|
7 |
+
from sklearn.linear_model import LinearRegression
|
8 |
+
from sklearn.ensemble import VotingRegressor
|
9 |
+
|
10 |
+
|
11 |
+
def plot_votes(preds: list[tuple[str, np.array]], markers: list[str]=None) -> go.Figure:
|
12 |
+
fig = go.Figure()
|
13 |
+
|
14 |
+
for idx, (name, pred) in enumerate(preds):
|
15 |
+
if not markers:
|
16 |
+
symbol = "diamond"
|
17 |
+
else:
|
18 |
+
symbol = markers[idx]
|
19 |
+
fig.add_trace(
|
20 |
+
go.Scatter(
|
21 |
+
y=pred,
|
22 |
+
mode="markers",
|
23 |
+
name=name,
|
24 |
+
marker=dict(symbol=symbol, size=10, line=dict(width=2, color="DarkSlateGrey"))
|
25 |
+
)
|
26 |
+
)
|
27 |
+
fig.update_layout(
|
28 |
+
title="Regressor predictions and their average",
|
29 |
+
yaxis_title="Predicted",
|
30 |
+
xaxis_title="Training Samples",
|
31 |
+
height=500,
|
32 |
+
width=1000,
|
33 |
+
xaxis=dict(showticklabels=False),
|
34 |
+
hovermode="x unified"
|
35 |
+
)
|
36 |
+
|
37 |
+
return fig
|
38 |
+
|
39 |
+
|
40 |
+
def app_fn(n: int) -> go.Figure:
|
41 |
+
X, y = load_diabetes(return_X_y=True)
|
42 |
+
|
43 |
+
# Train classifiers
|
44 |
+
reg1 = GradientBoostingRegressor(random_state=1)
|
45 |
+
reg2 = RandomForestRegressor(random_state=1)
|
46 |
+
reg3 = LinearRegression()
|
47 |
+
|
48 |
+
reg1.fit(X, y)
|
49 |
+
reg2.fit(X, y)
|
50 |
+
reg3.fit(X, y)
|
51 |
+
|
52 |
+
ereg = VotingRegressor([("gb", reg1), ("rf", reg2), ("lr", reg3)])
|
53 |
+
ereg.fit(X, y)
|
54 |
+
|
55 |
+
xt = X[:n]
|
56 |
+
|
57 |
+
pred1 = reg1.predict(xt)
|
58 |
+
pred2 = reg2.predict(xt)
|
59 |
+
pred3 = reg3.predict(xt)
|
60 |
+
pred4 = ereg.predict(xt)
|
61 |
+
|
62 |
+
preds = [
|
63 |
+
("Gradient Boosting", pred1),
|
64 |
+
("Random Forest", pred2),
|
65 |
+
("Linear Regression", pred3),
|
66 |
+
("Voting Regressor", pred4)
|
67 |
+
]
|
68 |
+
markers = ["diamond-tall", "triangle-up", "square", "star"]
|
69 |
+
fig = plot_votes(preds, markers)
|
70 |
+
|
71 |
+
return fig
|
72 |
+
|
73 |
+
with gr.Blocks() as demo:
|
74 |
+
n = gr.inputs.Slider(10, 30, 5, 20, "Number of training samples")
|
75 |
+
plot = gr.Plot(label="Individual & Voting Predictions")
|
76 |
+
button = gr.Button(label="Update Plot")
|
77 |
+
button.click(fn=app_fn, inputs=[n], outputs=[plot])
|
78 |
+
demo.load(fn=app_fn, inputs=[n], outputs=[plot])
|