EduardoPacheco commited on
Commit
b1d8269
·
1 Parent(s): fade4ac

Suggested modifications

Browse files
Files changed (1) hide show
  1. app.py +4 -1
app.py CHANGED
@@ -81,11 +81,14 @@ with gr.Blocks() as demo:
81
  Then it averages the individual predictions to form a final prediction. This example will use three different regressors to \
82
  predict the data: GradientBoostingRegressor, RandomForestRegressor, and LinearRegression. Then the 3 regressors will be used for the VotingRegressor. \
83
  The dataset used consists of 10 features collected from a cohort of diabetes patients. The target is a quantitative measure of disease progression one year after baseline.
 
 
84
  """
85
  )
86
  n = gr.inputs.Slider(10, 30, 5, 20, "Number of training samples")
87
- plot = gr.Plot(label="Individual & Voting Predictions")
88
  button = gr.Button(label="Update Plot")
 
 
89
  button.click(fn=app_fn, inputs=[n], outputs=[plot])
90
  demo.load(fn=app_fn, inputs=[n], outputs=[plot])
91
 
 
81
  Then it averages the individual predictions to form a final prediction. This example will use three different regressors to \
82
  predict the data: GradientBoostingRegressor, RandomForestRegressor, and LinearRegression. Then the 3 regressors will be used for the VotingRegressor. \
83
  The dataset used consists of 10 features collected from a cohort of diabetes patients. The target is a quantitative measure of disease progression one year after baseline.
84
+
85
+ [Original example](https://scikit-learn.org/stable/auto_examples/ensemble/plot_voting_regressor.html#sphx-glr-auto-examples-ensemble-plot-voting-regressor-py)
86
  """
87
  )
88
  n = gr.inputs.Slider(10, 30, 5, 20, "Number of training samples")
 
89
  button = gr.Button(label="Update Plot")
90
+ plot = gr.Plot(label="Individual & Voting Predictions")
91
+
92
  button.click(fn=app_fn, inputs=[n], outputs=[plot])
93
  demo.load(fn=app_fn, inputs=[n], outputs=[plot])
94