Commit
·
b1d8269
1
Parent(s):
fade4ac
Suggested modifications
Browse files
app.py
CHANGED
@@ -81,11 +81,14 @@ with gr.Blocks() as demo:
|
|
81 |
Then it averages the individual predictions to form a final prediction. This example will use three different regressors to \
|
82 |
predict the data: GradientBoostingRegressor, RandomForestRegressor, and LinearRegression. Then the 3 regressors will be used for the VotingRegressor. \
|
83 |
The dataset used consists of 10 features collected from a cohort of diabetes patients. The target is a quantitative measure of disease progression one year after baseline.
|
|
|
|
|
84 |
"""
|
85 |
)
|
86 |
n = gr.inputs.Slider(10, 30, 5, 20, "Number of training samples")
|
87 |
-
plot = gr.Plot(label="Individual & Voting Predictions")
|
88 |
button = gr.Button(label="Update Plot")
|
|
|
|
|
89 |
button.click(fn=app_fn, inputs=[n], outputs=[plot])
|
90 |
demo.load(fn=app_fn, inputs=[n], outputs=[plot])
|
91 |
|
|
|
81 |
Then it averages the individual predictions to form a final prediction. This example will use three different regressors to \
|
82 |
predict the data: GradientBoostingRegressor, RandomForestRegressor, and LinearRegression. Then the 3 regressors will be used for the VotingRegressor. \
|
83 |
The dataset used consists of 10 features collected from a cohort of diabetes patients. The target is a quantitative measure of disease progression one year after baseline.
|
84 |
+
|
85 |
+
[Original example](https://scikit-learn.org/stable/auto_examples/ensemble/plot_voting_regressor.html#sphx-glr-auto-examples-ensemble-plot-voting-regressor-py)
|
86 |
"""
|
87 |
)
|
88 |
n = gr.inputs.Slider(10, 30, 5, 20, "Number of training samples")
|
|
|
89 |
button = gr.Button(label="Update Plot")
|
90 |
+
plot = gr.Plot(label="Individual & Voting Predictions")
|
91 |
+
|
92 |
button.click(fn=app_fn, inputs=[n], outputs=[plot])
|
93 |
demo.load(fn=app_fn, inputs=[n], outputs=[plot])
|
94 |
|