Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import numpy as np
|
4 |
+
import time
|
5 |
+
from sklearn.base import BaseEstimator, clone
|
6 |
+
from sklearn.cluster import AgglomerativeClustering
|
7 |
+
from sklearn.datasets import make_blobs
|
8 |
+
from sklearn.ensemble import RandomForestClassifier
|
9 |
+
from sklearn.inspection import DecisionBoundaryDisplay
|
10 |
+
from sklearn.utils.metaestimators import available_if
|
11 |
+
from sklearn.utils.validation import check_is_fitted
|
12 |
+
|
13 |
+
theme = gr.themes.Monochrome(
|
14 |
+
primary_hue="indigo",
|
15 |
+
secondary_hue="blue",
|
16 |
+
neutral_hue="slate",
|
17 |
+
)
|
18 |
+
model_card = f"""
|
19 |
+
## Description
|
20 |
+
|
21 |
+
**Clustering** can be costly, especially when we have a lot of data.
|
22 |
+
Some clustering algorithms cannot be used with new data without redoing the clustering, which can be difficult.
|
23 |
+
Instead, we can use clustering to create a model with a classifier, it calls **Inductive Clustering**
|
24 |
+
This demo illustrates a generic implementation of a meta-estimator which extends clustering by inducing a classifier from the cluster labels, and compares the running time.
|
25 |
+
You can play around with different ``number of samples`` and ``number of new data`` to see the effect
|
26 |
+
|
27 |
+
## Dataset
|
28 |
+
|
29 |
+
Simulation dataset
|
30 |
+
"""
|
31 |
+
|
32 |
+
def _classifier_has(attr):
|
33 |
+
"""Check if we can delegate a method to the underlying classifier.
|
34 |
+
|
35 |
+
First, we check the first fitted classifier if available, otherwise we
|
36 |
+
check the unfitted classifier.
|
37 |
+
"""
|
38 |
+
return lambda estimator: (
|
39 |
+
hasattr(estimator.classifier_, attr)
|
40 |
+
if hasattr(estimator, "classifier_")
|
41 |
+
else hasattr(estimator.classifier, attr)
|
42 |
+
)
|
43 |
+
|
44 |
+
class InductiveClusterer(BaseEstimator):
|
45 |
+
def __init__(self, clusterer, classifier):
|
46 |
+
self.clusterer = clusterer
|
47 |
+
self.classifier = classifier
|
48 |
+
|
49 |
+
def fit(self, X, y=None):
|
50 |
+
self.clusterer_ = clone(self.clusterer)
|
51 |
+
self.classifier_ = clone(self.classifier)
|
52 |
+
y = self.clusterer_.fit_predict(X)
|
53 |
+
self.classifier_.fit(X, y)
|
54 |
+
return self
|
55 |
+
|
56 |
+
@available_if(_classifier_has("predict"))
|
57 |
+
def predict(self, X):
|
58 |
+
check_is_fitted(self)
|
59 |
+
return self.classifier_.predict(X)
|
60 |
+
|
61 |
+
@available_if(_classifier_has("decision_function"))
|
62 |
+
def decision_function(self, X):
|
63 |
+
check_is_fitted(self)
|
64 |
+
return self.classifier_.decision_function(X)
|
65 |
+
|
66 |
+
|
67 |
+
def do_train(n_samples, n_new_data):
|
68 |
+
|
69 |
+
N_SAMPLES = n_samples
|
70 |
+
N_NEW_DATA = n_new_data
|
71 |
+
RANDOM_STATE = 42
|
72 |
+
|
73 |
+
# Generate some training data from clustering
|
74 |
+
X, y = make_blobs(
|
75 |
+
n_samples=N_SAMPLES,
|
76 |
+
cluster_std=[1.0, 1.0, 0.5],
|
77 |
+
centers=[(-5, -5), (0, 0), (5, 5)],
|
78 |
+
random_state=RANDOM_STATE,
|
79 |
+
)
|
80 |
+
# Train a clustering algorithm on the training data and get the cluster labels
|
81 |
+
clusterer = AgglomerativeClustering(n_clusters=3)
|
82 |
+
cluster_labels = clusterer.fit_predict(X)
|
83 |
+
|
84 |
+
fig1, axes1 = plt.subplots()
|
85 |
+
axes1.scatter(X[:, 0], X[:, 1], c=cluster_labels, alpha=0.5, edgecolor="k")
|
86 |
+
axes1.set_title("Ward Linkage")
|
87 |
+
|
88 |
+
|
89 |
+
# Generate new samples and plot them along with the original dataset
|
90 |
+
X_new, y_new = make_blobs(
|
91 |
+
n_samples=N_NEW_DATA, centers=[(-7, -1), (-2, 4), (3, 6)], random_state=RANDOM_STATE
|
92 |
+
)
|
93 |
+
|
94 |
+
fig2, axes2 = plt.subplots()
|
95 |
+
axes2.scatter(X[:, 0], X[:, 1], c=cluster_labels, alpha=0.5, edgecolor="k")
|
96 |
+
axes2.scatter(X_new[:, 0], X_new[:, 1], c="black", alpha=1, edgecolor="k")
|
97 |
+
axes2.set_title("Unknown instances")
|
98 |
+
|
99 |
+
# Declare the inductive learning model that it will be used to
|
100 |
+
# predict cluster membership for unknown instances
|
101 |
+
t1 = time.time()
|
102 |
+
classifier = RandomForestClassifier(random_state=RANDOM_STATE)
|
103 |
+
inductive_learner = InductiveClusterer(clusterer, classifier).fit(X)
|
104 |
+
|
105 |
+
probable_clusters = inductive_learner.predict(X_new)
|
106 |
+
fig3, axes3 = plt.subplots()
|
107 |
+
disp = DecisionBoundaryDisplay.from_estimator(
|
108 |
+
inductive_learner, X, response_method="predict", alpha=0.4, ax=axes3
|
109 |
+
)
|
110 |
+
disp.ax_.set_title("Classify unknown instances with known clusters")
|
111 |
+
disp.ax_.scatter(X[:, 0], X[:, 1], c=cluster_labels, alpha=0.5, edgecolor="k")
|
112 |
+
disp.ax_.scatter(X_new[:, 0], X_new[:, 1], c=probable_clusters, alpha=0.5, edgecolor="k")
|
113 |
+
t1_running = time.time() - t1
|
114 |
+
|
115 |
+
# recomputing clustering and classify boundary
|
116 |
+
t2 = time.time()
|
117 |
+
X_all = np.concatenate((X, X_new), axis=0)
|
118 |
+
clusterer = AgglomerativeClustering(n_clusters=3)
|
119 |
+
y = clusterer.fit_predict(X_all)
|
120 |
+
classifier = RandomForestClassifier(random_state=RANDOM_STATE).fit(X_all, y)
|
121 |
+
fig4, axes4 = plt.subplots()
|
122 |
+
disp = DecisionBoundaryDisplay.from_estimator(
|
123 |
+
classifier, X_all, response_method="predict", alpha=0.4, ax=axes4
|
124 |
+
)
|
125 |
+
disp.ax_.set_title("Classify unknown instance with recomputing clusters")
|
126 |
+
disp.ax_.scatter(X_all[:, 0], X_all[:, 1], c=y, alpha=0.5, edgecolor="k")
|
127 |
+
t2_running = time.time() - t2
|
128 |
+
text = f"Inductive Clustering running time: {t1_running:.4f}s. Recomputing clusters running time: {t2_running:.4f}s"
|
129 |
+
return fig1, fig2, fig3, fig4, text
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
with gr.Blocks(theme=theme) as demo:
|
134 |
+
gr.Markdown('''
|
135 |
+
<div>
|
136 |
+
<h1 style='text-align: center'>Inductive Clustering</h1>
|
137 |
+
</div>
|
138 |
+
''')
|
139 |
+
gr.Markdown(model_card)
|
140 |
+
gr.Markdown("Author: <a href=\"https://huggingface.co/vumichien\">Vu Minh Chien</a>. Based on the example from <a href=\"https://scikit-learn.org/stable/auto_examples/cluster/plot_inductive_clustering.html#sphx-glr-auto-examples-cluster-plot-inductive-clustering-py\">scikit-learn</a>")
|
141 |
+
n_samples = gr.Slider(minimum=5000, maximum=10000, step=1000, value=5000, label="Number of samples")
|
142 |
+
n_new_data = gr.Slider(minimum=100, maximum=1000, step=100, value=100, label="Number of new data")
|
143 |
+
with gr.Row():
|
144 |
+
with gr.Column():
|
145 |
+
plot1 = gr.Plot(label="Clustering")
|
146 |
+
with gr.Column():
|
147 |
+
plot2 = gr.Plot(label="Clustering with noise")
|
148 |
+
with gr.Row():
|
149 |
+
with gr.Column():
|
150 |
+
plot3 = gr.Plot(label="Inductive clustering")
|
151 |
+
with gr.Column():
|
152 |
+
plot4 = gr.Plot(label="Recomputing clustering")
|
153 |
+
with gr.Row():
|
154 |
+
results = gr.Textbox(label="Results")
|
155 |
+
|
156 |
+
n_samples.change(fn=do_train, inputs=[n_samples, n_new_data], outputs=[plot1, plot2, plot3, plot4, results])
|
157 |
+
n_new_data.change(fn=do_train, inputs=[n_samples, n_new_data], outputs=[plot1, plot2, plot3, plot4, results])
|
158 |
+
|
159 |
+
demo.launch()
|