File size: 2,972 Bytes
303f2f6 783a1d4 64eb9a6 fd886b3 64eb9a6 303f2f6 783a1d4 303f2f6 fd886b3 64eb9a6 fd886b3 64eb9a6 fd886b3 64eb9a6 fd886b3 64eb9a6 fd886b3 64eb9a6 783a1d4 303f2f6 783a1d4 303f2f6 783a1d4 303f2f6 783a1d4 fd886b3 64eb9a6 2bfaffc fd886b3 64eb9a6 fd886b3 64eb9a6 96f4763 64eb9a6 783a1d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
import os
import pandas as pd
from sklearn.ensemble import IsolationForest
import numpy as np
from sklearn.model_selection import train_test_split
import gradio as gr
import matplotlib.pyplot as plt
from skops import hub_utils
import pickle
import time
#Data preparation
n_samples, n_outliers = 120, 40
rng = np.random.RandomState(0)
covariance = np.array([[0.5, -0.1], [0.7, 0.4]])
cluster_1 = 0.4 * rng.randn(n_samples, 2) @ covariance + np.array([2, 2]) # general deformed cluster
cluster_2 = 0.3 * rng.randn(n_samples, 2) + np.array([-2, -2]) # spherical cluster
outliers = rng.uniform(low=-4, high=4, size=(n_outliers, 2))
X = np.concatenate([cluster_1, cluster_2, outliers]) #120+120+40 = 280 with 2D
y = np.concatenate(
[np.ones((2 * n_samples), dtype=int), -np.ones((n_outliers), dtype=int)]
)
#Visualize the data as a scatter plot
def visualize_input_data():
fig = plt.figure(1, facecolor="w", figsize=(5, 5))
scatter = plt.scatter(X[:, 0], X[:, 1], c=y, s=20, edgecolor="k")
handles, labels = scatter.legend_elements()
plt.axis("square")
plt.legend(handles=handles, labels=["outliers", "inliers"], title="true class")
plt.title("Gaussian inliers with \nuniformly distributed outliers")
# plt.show()
return fig
from sklearn.inspection import DecisionBoundaryDisplay
def plot_decision_boundary():
time.sleep(1)
disp = DecisionBoundaryDisplay.from_estimator(
loaded_model,
X,
response_method="predict",
alpha=0.5,
)
fig1 = plt.figure(1, facecolor="w", figsize=(5, 5))
scatter = plt.scatter(X[:, 0], X[:, 1], c=y, s=20, edgecolor="k")
disp.ax_.scatter(X[:, 0], X[:, 1], c=y, s=20, edgecolor="k")
handles, labels = scatter.legend_elements()
disp.ax_.set_title("Binary decision boundary \nof IsolationForest")
plt.axis("square")
plt.legend(handles=handles, labels=["outliers", "inliers"], title="true class")
# plt.savefig('decision_boundary.png',dpi=300, bbox_inches = "tight")
return fig1
title = " An example using IsolationForest for anomaly detection."
with gr.Blocks(title=title) as demo:
gr.Markdown(f"# {title}")
gr.Markdown(" **https://scikit-learn.org/stable/auto_examples/ensemble/plot_isolation_forest.html#sphx-glr-auto-examples-ensemble-plot-isolation-forest-py**")
btn = gr.Button(value="Visualize input dataset")
btn.click(visualize_input_data, outputs= gr.Plot(label='Visualizing input dataset') )
# download
repo_id="sklearn-docs/anomaly-detection"
download_repo = "downloaded-model"
hub_utils.download(repo_id=repo_id, dst=download_repo)
time.sleep(2)
print(os.listdir(download_repo))
loaded_model = pickle.load(open('./downloaded-model/isolation_forest.pkl', 'rb'))
btn_decision = gr.Button(value="Plot decision boundary")
btn_decision.click(plot_decision_boundary, outputs= gr.Plot(label='Plot decision boundary') )
gr.Markdown( f"## Success")
demo.launch() |